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IBM Rational Cafes – Connecting Communities 
 Accelerate your enterprise modernization 

efforts by becoming a member of the Cafe 
communities 

 Ask questions, get free distance learning, 
browse the resources, attend user group 
webcasts, read the blogs, download trials, 
and share with others 

 Cafes have forums, blogs, wikis, and more 
 

 Languages covered:  
C/C++, COBOL, Fortran, EGL, PL/I, and 
RPG 

 Products covered: 
 • COBOL for AIX® 

• Enterprise COBOL for z/OS® 
• Enterprise PL/I for z/OS 
• Host Access Transformation Services 
• PL/I for AIX 
• Rational® Business Developer 
• Rational Developer for Power Systems Software™ 
• Rational Developer for i for SOA Construction 
• Rational Developer for System z 
• Rational Developer for System z Unit Test 
• Rational Team Concert™ 
• XL C for AIX 
• XL C/C++ for AIX/Linux ® 
• XL Fortran for AIX/Linux 
• XL C/C++ for z/VM 
• z/OS XL C/C++ 

Become a member and join the conversation! 
ibm.com/rational/café 

 
Continue the conversation 

 
facebook.com/IBMcompilers 

 
@IBM_Compilers 

 
xl_compiler@ca.ibm.com 
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Enterprise Modernization: The Cornerstone of Smarter Computing 

IBM Enterprise Modernization Sandbox 
Realize the value of your investments in assets, skills and infrastructure within 
minutes 

Try it firsthand within minutes today! 
ibm.com/playinthesandbox 

 Learn how to revitalize applications, empower people, 
unify teams and exploit infrastructure based on your 

knowledge and experiences 
 

 See firsthand the tangible value Rational tools can bring 
to your business 

 

 Get a fast start with scripted scenarios  
and best practice education materials  

at no cost available 24x7 
 

 Access a  low risk way to try several new offerings and 
integrated solutions without 

disturbing your existing environment 

Deployed in 
IBM’s own 

data centers 

 
Browser availability 

through an easy 
Citrix plug-in install! 

 

http://www.ibm.com/developerworks/downloads/emsandbox/�
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Agenda 
 “The time has come,” the ISO said, “To talk of many things:   
Of move-capture— 
and literals—  
Of making lambdas sing—  
And why deduction is so hot—  
And if digits should grow wings?” 
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C++11 is ratified, but I am missing fingers and toes 
 You can capture by copy or by reference, but why do we not 

have move capture in lambdas?   

 You created User-defined literals, so how about some real 
user-defined literal suffixes?   

 We love monomorphic lambdas to supplant std::bind, but why 
did you stop there? 

 If lambda returns can be deduced, why not normal functions?   

 Can/should we get digit separators?  

7 
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Compute Less! 
 1983, July 23: Air Canada flight 143 (Gimli Glider) a Boeing 767-233, 

ran out of fuel at 41,000 ft. Miraculously, no one died!  
 Instead of 22,300 kg of fuel, they had 22,300 lbs (10,100 kg) 
Using 1.77 kg/L conversion , the weight of a litre of fuel in pounds 
Not the correct .803 kg/L 

 1999, Sept 23, Mars Climate Orbiter, costing $654M USD was lost due 
to navigation error 
Software error did not use metric units in the ground software 
Thruster performance data in Imperial units  
What was lost 
 Lifetime work of 200 engineers 
 Mission scientific results 
 But we were all taught since high school to verify units are correct in 

computations 
 Why didn’t experts in their own field do that 

8 
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Units Programming 
 No mainstream programming languages support units 
But every language can encode a value as {quantity,unit} pair 
 Unit can be every SI unit (meters, kg) 
Why not do that? 
 Double the size of our data 
 Checking in every computation would double computations 

 Space probes have memory and compute limits just like cell 
phones 
So engineers tries to keep track of units in their heads, in comments 

or in docs 
Here, they lost 
 Compilers don’t read docs, comments or minds, yet 
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Why don’t we support units? 
 If a number crossed an interface without its units, it took on a 

whole new meaning 
Here it  changed by 4.45 
Integers and floating-point numbers are unsafe interfaces 

 So why don’t general purpose languages support units 
It can’t be because it is hard to check at compile time, because it 

isn’t 
Probably Historical, but also variety of other reasons 
 Different unit systems, markers to help concurrency, timing 

constraints 
 Can’t build in every notion, so language designers prefer to do 

nothing 

10 
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C++11 Unit Programming 
 How about a tool or specialized language to supply SI units 
Yes, but features work best when they are integrated into GP langs 
 Not as separate tool chains, or special languages which don’t 

work well with other special lang or tools 

 Expressive enough lang can support it and get compile-time 
unit checking 
Define speed as a template and unit part of the type with quantity as 

a runtime value 

11 



IBM Software Group | Rational software 

C++98/03 SI unit from Bjarne’s GN keynote 2012 

template <int M, int K, int S> 

struct Unit{ 

  enum { m=M, kg=K, s=S}; 

}; 

template<typename Unit> // 
magnitude with unit 

struct Value { 

  double val; // the magnitude 

  explicit Value(double d) 

    : val(d) {} // construct a Value 
from a double 

}; 
 

 

Speed sp1 = Value<1,0,0> 
(100)/ Value<0,0,1> (9.8); // 
very explicit  

Speed sp1 = Value<M> (100)/ 
Value<S> (9.8); // use a 
shorthand notation  

Speed sp1 = 
Meters(100)/Seconds(9.8); // 
abbreviate further still  

Speed sp1 = M(100)/S(9.8); // 
this is getting cryptic 

12 
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C++11 User defined literals for SI units 

using Second = Unit<0,0,1>; // s 

using Second2 = Unit<0,0,2>; // s*s 

 

constexpr 

Value<Second> operator”” s(long double d) 

// a f-p literal suffixed by 's' 

{ 

return Value<Second> (d); 

} 

constexpr 

Value<Second2> operator”” s2(long double 
d) 

// a f-p literal suffixed by 's2' 

{ 

return Value<Second2 > (d); 

} 

Speed sp1 = 100m/9.8s; // very 
fast for a human  

Speed sp2 = 100m/9.8s2; // 
error (m/s2 is acceleration)  

Speed sp3 = 100/9.8s; // error 
(speed is m/s and 100 has 
no unit)  

Acceleration acc = sp1/0.5s; // 
too fast for a human 

13 
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Type-Rich Programming at Compiler Time 
 Improve code quality without runtime costs 

 Use a static type system and moves checking to compile time 

 Move as much  as possible into compile time computation 
 Done for decades either as programmers pre-computed magic numbers and added them as input data 
 C macros are un-typed and is error prone 
 For infrastructure code, this is not good enough 

 Need a systematic structured approach Bjarne called type-rich programming at compile-
time 

 Project forward for concurrency, it becomes more then an approach but a requirement 
 No data race on constants 
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“and literals” 
 Motivation: 
 Make literals be user-definable, just like classes 
 Allows us to specify new literals for future C++ extensions 
 SI units, new strings, Arbitrary precision integers, 

 Natural syntax for initialization, instead of using constructors 
 C portability, e.g. Decimal Floating-point literals 

 Solution: User-defined Literal or UDL 
 Any built-in literal without a suffix can concat with an identifier suffix to be a new literal 
 23 OK but not 23LL 

 UDL suffix is just an Unqualified call to a new kind of literal operator 
 X operator ”” suffix (<parameters>); 
 X is arbitrary return type 
 Suffix is an identifier literal suffix mapping to this call 
 <parameters> is described later 

 Cool, but can it handle prefixes, or both pre/suffixes?  
 No 

 Ok, how many actual UDLs are in C++11? 
 None! 
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Rules for Users 
 Can only use suffixes with _: 32.5_km (library can define w/o _) 
Calls operator ”” _km(32.5L) 
constexpr Kilometers operator ”” _km(long double dist) { 
  return Kilometers{Kilometers::convDouble2km{}, 

static_cast<double>(dist)}; 
} 
Kilometers distance=32.5_km; 
Kilometers distance=19.2_miles; //Can convert inside the op func 
Kilometers distance=19.2_miles+32.5_km; //more then one literal can 

return the same type, if you convert inside, and define operator + 

 Can mix builtin strings literals with UDLs 
L”long: “ “I/O error”_s 

 2 distinct groups 
Raw and cooked literals 
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Cooked String literals 
std::string operator ””_ws (const wchar_t * s, size_t length) { 
  return std::wstring{s, length}; 
} 
L”I18N”_ws // operator ”” (L”I18N”,4); 
Can be concatenated like other string literals 
 All components must be the same suffixes 

– L”log “ “ I/O Error”s //OK 
– ”log “x “ I/O Error”s //Error 
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Cooked literals 
 Form (takes precedence over upcoming raw-form) 
X operator ”” suffix (unsigned long long); 
X operator ”” suffix (long double); 
 Sign is a unary prefix operator of an unsigned number 
X operator ”” suffix (const char*, size_t); //and wchar_t, char16_t, 

char32_t when it is L prefix, u prefix or U prefix 
 Number of characters is passed as second argument 

X operator ”” suffix (char); // and wchar_t, char16_t, char32_t when it 
is L prefix, u prefix or U prefix 
 

 Still runtime evaluation, just a call 

18 
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Raw literal operators 
 
Sequence of characters in the original source + first 6 phases of 

translation (macro expand, string literal concat … ) 
Significant information is lost in cooked form 
 1.2e-3DF is not the same as .0012 
 798387429349873942854858439594343839x have no valid 

cooked form 
Transforms raw form of numerical (float and integer) 
Needed when UDL suffix changes the meaning of digits in literal 
Form (cannot see both form in namelookup or same scope) 
 X operator ”” suffix (char const *); //still not compile time if it 

throws 
 template <char …> X operator ”” suffix(); 

– Variadic template form with constexpr uses TMP for compile-
time value 
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Compile-time constants 
 To ensure compile-time evaluation, need to use literal operator 

templates 

 Need to be implemented using recursion and template  

 Error checking at compile time through static_assert, not throw 

 Uses unpacking of parameter packs to build a new value/type 

 Performance: full use of TMP will increase compile time 
Compared to built-in types 
 Another motivation for a builtin  binary type 
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UDL idioms and guidelines 
 They use built-in types and are never found through ADL, tempting to 

put into global namespace …  
But Don’t define UDL operators in global namespace 
Don’t have a global using-declaration 
 _us (is it a micro-sec or US dollar?) 

 Surround it with namespace, and further nest a namespace specify the 
literal operator, in your own header file 
Don’t use a using declaration in your header to import the literals to global ns 
 Ignore my suggestion in N2750 to add the using directive in the same header 

file (which postpone the compilation error) 
 Only ambiguous when you use the literal 
 But Still ambiguous with 2 libs defining the same  

 Instead, add a using directive so you can import the literal you want, or a 
namespace declaration for the operator you really want 
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Binary Literal operator template by Daniel Krügler 
#include <type_traits>  

#include <cstdint>  

namespace tools {  
namespace details {  
 
template<class...>  struct and_;  
 
template<>  
struct and_<> : std::true_type  { };  
 
template<class B1>  
struct and_<B1> : B1 { };  
 
template<class B1, class B2>  
struct and_<B1, B2> : std::conditional<B1::value, B2, 
B1>::type  { };  
 
template<class B1, class B2, class B3, class... Bn>  
struct and_<B1, B2, B3, Bn...> : 
std::conditional<B1::value,  
   and_<B2, B3, Bn...>, B1 >::type  { };  
 
template<char...>  
struct binary_to_decimal;  
 
template<>  
struct binary_to_decimal<>  {  
   static constexpr std::uintmax_t value = 0;  
};  
 
 

 template<char D1, char... Dn>  
struct binary_to_decimal<D1, Dn...>  {  
   static constexpr std::uintmax_t value =  
     (UINTMAX_C(1) << sizeof...(Dn)) * (D1 - '0') +  
     binary_to_decimal<Dn...>::value;  
};  
 
template<char D>  
struct is_binary_digit : std::integral_constant<bool,  
   D == '0' || D == '1‘ >  
{  
};  
 
} // details  

template <char... Digits>  constexpr std::uintmax_t 
operator "" _b()  

 {  

       static_assert(details::and_<details::is_binary_digit<  
                 Digits>...>::value,  
                 "binary digits must be 0 or 1");  
return details::binary_to_decimal<Digits...>::value;  
}  

} 
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Binary Raw Literal  
#include <type_traits> 

#include <cstdint> 

namespace tools { 
namespace details { 
 
struct invalid_arg {}; 
 
constexpr std::size_t cstrlen_impl(const char* s, 
std::size_t i) 
{ 
  return s[i] ? cstrlen_impl(s, i + 1) : i; 
} 
 
constexpr std::size_t cstrlen(const char* s) 
{ 
  return s ? cstrlen_impl(s, 0) : throw 
invalid_arg{}; 
} 
 
constexpr unsigned to_val(char c) 
{ 
  return (c == '0') ? 0 : (c == '1') ? 1 : throw 
invalid_arg{}; 
} 
 
 

 constexpr std::uintmax_t 
binary_to_decimal_impl(const char* digits, 
std::size_t i, std::size_t n) 
{ 
  return (i != n) ? (UINTMAX_C(1) << (n - 1 - i)) * 
to_val(digits[i]) + 
    binary_to_decimal_impl(digits, i + 1, n) : 0; 
} 
 
constexpr std::uintmax_t 
binary_to_decimal(const char* digits) 
{ 
  return digits ? 
      binary_to_decimal_impl(digits, 0, 
cstrlen(digits)) 
    : throw invalid_arg{}; 
} 
 
} //details 
 

constexpr std::uintmax_t operator "" _b(const char* 
digits) 

 { 
return details::binary_to_decimal(digits); 
} 

} 
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main() 
int main(){ 

using tools::operator"" _b; 
 
static_assert(0_b == 0, "Ouch"); 
static_assert(1_b == 1, "Ouch"); 
static_assert(01_b == 1, "Ouch"); 
static_assert(10_b == 2, "Ouch"); 
static_assert(11_b == 3, "Ouch"); 
static_assert(00011_b == 3, "Ouch"); 
static_assert(1000_b == 8, "Ouch"); 
static_assert(1111_b == 15, "Ouch"); 
static_assert(101101110111000001100101110_b == 96174894, "Ouch"); 
static_assert(1110001100001010001001100011111101_b == 15236372733, "Ouch"); 
 
auto i = 10001000100010001000100010001000_b; 
auto j = 1000100010001000100010001000100010_b; 
    
static_assert( std::is_same<decltype(i), unsigned int>::value, “Not unsigned" ); //This will print Not unsigned 
static_assert( std::is_same<decltype(j), unsigned long long>::value, Not unsigned long long" ); 

 
} 
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To ””b or not to ””b aka Binary Literals prefix 

User defined literals  
using namespace 

std::binary_literals; 

auto x=100b; // int x=4 

auto y=1000bu; // unsigned y=8 

auto 
xll=0111111111111111111111
1111111111111111111111111
11111111111111111b; 

// long long xll 

C+14 binary literals 
 These are identical 

i = 42;  

i = 0x2a;  

i = 052;  

i = 0b101010; 
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C++14 UDL suffixes 
 use an inline namespace std::literals for all such UDL 

namespaces 

 overloads for operator"" s() can be used for std::string and 
std::chrono::duration, because the parameter is different. 

 keep s for std::string and std::string_ref should propose a 
different suffix such as sr or sv if it is std::string_view 

 C++14 UDL suffixes 
std::basic_string, suffix s in inline namespace 

std::literals::string_literals 

 std::chrono::duration, suffixes h, min, s, ms, us, ns in inline 
namespace std::literals::chrono_literals 
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Future UDL suffixes 
 More UDL suffixes for other integral types 

 Only lower case suffixes 

 Complex type literal suffixes  

 Namespace idiom 
all suffixes for user defined literals in separate inline namespaces 

that are below the inline namespace std::literals 
To import all literals from the Std:  

using namespace std::literals; 
To import all literals from the Std of a specific type: 

using namespace std::string_literals 

27 
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Time and time again 

User defined literals (Real) 
using namespace 

std::chrono_literals; 

auto constexpr aday=24h; 

auto constexpr 
lesson=45min; 

auto constexpr 
halfanhour=0.5h; 

std::chrono::duration 
 h 

 min 

 s 

 ms 

 ns 
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“Of making lambdas sing” 

C++03 
struct functor  

{  

  int &a;  

  functor(int& _a) : a(_a) { }  

  bool operator()(int x) const  

  {    

    return a == x;  

  }  

};  

  int a = 42;  

  count_if(v.begin(), v.end(), functor(a));  

  

C++11 
 

int a = 42;  

count_if(v.begin(), v.end(), 
[&a](int x){ return x == a;}); 
  

//C++14 
 

count_if(v.begin(),v.end(),[&a]
(auto x){return x == a;});   
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Lambda closures 

Caller  Closure  

 

 
 a=1  
 b=2 
 a=12 b=22  
 a=12 b=22  
 a=37 b=22   
 

C++11 
 

void caller()  

{  

int a = 1;  

int b = 2;  

[&](){a = 12;b = 22;}();  

[=]() mutable{a = 13;b = 15;}();  

[=,&a]() mutable{a = 37;b = 29;}();  

}   
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a=12 b=22  

a=13 b=15 

a=37 b=29  
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Lambda closures 

Caller  Closure 
 
 
 
 
 

 
 a=33 b=16 z=49  
 a=33 b=17 z=50 
 a=33 b=18 z=51 

 

C++11 
void caller()  

{  

int a = 42;  

int b = 15;  

auto c = [=]() mutable{a = 33;++b; int 
z = a + b; return z; };  

c();  

c();  

c();  

}   
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 a=42  

 b=15  

 

 a=42 b=15  

 a=42 b=15  

 a=42 b=15   
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Lambda == Functor  (borrowed from Herb Sutter) 

( params ) -> ret    { statements; } 

class __functor { 
 
 
 
 
 
 
 
 

}; 

[ captures ] 

private: 
  CaptureTypes __captures; 
public: 
  __functor( CaptureTypes captures ) 
    : __captures( captures ) { } 

  auto operator() ( params ) -> ret 
    { statements; } 



IBM Software Group | Rational software 

Lambda gotchas with ‘this’  

 one variable that 
can be captured 
without mentioning 
its name: this 
This is invisible 
Capture of members 

variables by reference 
even if you wrote [=] 
member variables 

cannot be captured by 
value at all 

 

void myclass::myfunc( int x ) { 
yeti y; 
auto lambda = [=] {  
 f( x ); // x captured by value  
 y.g(); // y captured by value 
 cout << z; // this captured by 

value if z is a member 
variable…  

  // … and z is captured as 
if by reference  

}; 

} 
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Lambdas == Functors inside of a class 

( params )      

class __functor { 
 
 
 
 
 
 
 
 

}; 

[ captures ] 

private: 
  C *const __this; 
  CaptureTypes __captures; 
public: 
  __functor( C* this, CaptureTypes captures ) 
    : __captures( captures ) { } 

  auto operator() ( params ) const -> ret 
    { statements; } // const C* const 

Class C { 

}; 

->ret { statements; } 
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Don’t modify a lambda capture of a local variable 
 lambda is automatically const, need to deliberately made mutable 

int val = 0; 

auto x = [=]( item e ) // look ma, [=] means explicit copy  

{ use( e, ++val ); }; // error: val is const, need ‘mutable’ 

auto y = [val]( item e ) // darnit, I really can’t get more explicit  

{ use( e, ++val ); }; // same error: val is const, need ‘mutable’ 

 Is this better? 

void f( int count ) {    // pass by value – explicit copy … 
do_something_with( ++count ); // ok, modify my copy – no weird 
‘mutable’ needed … } 

int count = 0;  

f( count ); // ok, pass a copy 
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Lambdas == Functors inside of a class with Mutable 

class __functor { 
 
 
 
 
 
 
 
 

}; 

[ captures ] 

private: 
  C *const __this; 
  CaptureTypes __captures; 
public: 
  __functor( C* this, CaptureTypes captures ) 
    : __captures( captures ) { } 

  auto operator() ( params ) const -> ret 
    { statements; } // C* const 

Class C { 

}; 

mutable 

Exception Specification! 
& Attributes 

( params )      ->ret { statements; } 
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C++11 lambda recap from Scott Meyers cpp-notes 
 A quick way to create function objects at their point of use. 

 Closures may outlive their creating function: 
Non‐static locals referenceable only if “captured.” 
 Capturing locals puts copies in closures 
 Captures may also be by reference 
 Different (non‐static) locals may be captured differently: 
Variables of static storage duration always referenceable. 
 Not allowed to capture them 

 Capture mode defaults may be specified 
Default overridable on a per‐variable basis 

 To access class members within a member function, capture 
this 

 Lambdas without parameters may omit the parameter list. 
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Other problems with monomorphic C++11 lambdas 
 lambdas are a hit, but… 
Mr/Ms compiler, why can’t you deduce my parameter type? 

std::for_each( begin(v), end(v), 
[](decltype(*begin(v)) x){ std::cout << x; }); 

auto get_size = 
[](std::unordered_multimap<std::wstring,std::list<s
td::string> > const& m ){ return m.size(); }; 

 will be in C++14: 

std::for_each( begin(v), end(v), [](auto & x){ 
std::cout << x; } ); 

auto get_size = [](auto & m){ return m.size(); }; 
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Generic Lambdas 

C++11 
auto lambda = [](int x, int y) 

{return x + y;} 

struct unnamed_lambda { 

  auto operator()(int x, int y) 
const {return x + y;}  

};  

C++14 
auto lambda = [](auto x, 

auto y) {return x + y;}  

struct unnamed_lambda { 
template<typename T, 
typename U> auto 
operator()(T x, U y) const 
{return x + y;}  

};  
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Enter the Generic lambda 

class __functor { 
 
 
 
 
 
 
 
 

}; 

[ captures ] 

private: 
  C *const __this; 
  CaptureTypes __captures; 
public: 
  __functor( C* this, CaptureTypes captures ) 
    : __captures( captures ) { } 

 template<typename  Ti > 
  void operator()( Ti params)    
    { statements; } // const C* const 

Class C { 

}; 

( auto params )      ->ret { statements; } 
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“Of move-capture “ 
How to capture std::unique_ptr “by move” for a lambda in std::for_each 
  From http://stackoverflow.com/questions/10280937/how-to-

capture-stdunique-ptr-by-move-for-a-lambda-in-stdfor-each 

std::array<int,4> arr = {1,3,5,6};  

std::unique_ptr<int> ptr(new int); (*ptr) = 3; 

std::for_each(arr.begin(), arr.end(), [ptr](int& i) { i+=*ptr; }); 

 doesn't work because unique_ptr doesn't have a copy 
constructor. c++0x doesn't specify the pass by move syntax. 

 How about capture by reference? 

std::for_each(arr.begin(), arr.end(), [&ptr](int& i) { i+=*ptr; }); 

 OK compiles, but there may be dangling reference 
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C++11 Lambda Capture Workaround from Anthony Williams 

#include <iostream> 

#include <utility> 

#include <memory> 

template<typename T> 

struct move_on_copy_wrapper 

{ 

    mutable T value; 

    move_on_copy_wrapper(T&& t): 

        value(std::move(t))     {} 

    move_on_copy_wrapper(move_on_copy_wrapper const& other): 

        value(std::move(other.value))     {} 

    move_on_copy_wrapper(move_on_copy_wrapper&& other): 

        value(std::move(other.value))     {} 

    move_on_copy_wrapper& operator=(move_on_copy_wrapper const& 
other) 

    { 

        value=std::move(other.value); 

        return *this; 

    } 

    move_on_copy_wrapper& operator=(move_on_copy_wrapper&& other) 

    { 

        value=std::move(other.value); 

        return *this; 

    } 

}; 

int main() 

{ 

    std::unique_ptr<int> p(new int(3)); 

    
move_on_copy_wrapper<std::unique_ptr
<int>> mp(std::move(p)); 

    [mp]() 

    { 

        
std::cout<<"*mp.value="<<*mp.value<<st
d::endl; 

    }    (); 

    std::cout<<"p="<<p.get()<<", 
mp="<<mp.value.get()<<std::endl; 

} 
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Move capture in C++14 lambdas 
 Did not just add move capture, but added generalized capture initialization to allow 

captured members to be initialized by arbitrary expressions 
 Allows capture by move and declaring arbitrary members of the lambda, without a corresponding 

named variable in the outer scope 

[ x { move(x) }, y = transform(y, z), foo, bar, baz ] { ... } 
 x is direct initialized by moving x 
 Y is copy initialized by calling transform 
 Rest are captured by value 

 So no capture by && like [&&x] { …} 
 We are not capturing by rvalue ref, we are moving 

 

{ 

  auto ptr = std::make_unique<int>(10); 

  return [ptr{std::move(ptr)}] // move ptr into closure; 

    { return *ptr; }; // C++14 only 

} 
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Move Capture Generic lambda 

class __functor { 
 
 
 
 
 
 
 
 
 
 

}; 

[captures{std::move(captures)}] 

private: 
  C *const __this; 
  std::unique_ptr<CaptureTypes>  __captures; 
public: 
  __functor( C* this, 
std::unique_ptr<CaptureTypes>&& captures ) 
    : __captures( std::move(captures) ) { } 

 template<typename  Ti > 
  void operator()( Ti params)    
    { statements; } // const C* const 

Class C { 

}; 

( auto params )      ->ret { statements; } 
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C++11 Deduce, deduce, deduce 
 C++ 11 deductions were minimal, just in lambda (don’t confuse it with auto type 

inference in C++11): 
 Optional when: 
 Return type is void. 
 Lambda body is “return expr;” 

– Return type is that of expr. 
 Otherwise must be specified via trailing return type syntax. 
 Must be used with lambdas (when a return type is given). 
 Often useful with decltype 
 Permitted with a leading auto 

 BUT, why can’t I do that on normal functions? 
auto f()? auto A::f() { return 42; } 
Well, should it be on declaration, definition, forward declarations, redeclarations, 

member functions? 
 How about recursive functions, functions with multiple returns? 
 Lots more questions and issues but I will cover a few cases 
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“And why deduction is so hot” 
 Lambda deduction has been improved to support multiple 

statements 
std::vector<double> v; 

… 

std::transform(v.begin(), v.end(), v.begin(), // C++11 

                       [](double d)->double 

                       { 

                          … 

                          return std::sqrt(std::abs(d)); 

                       }); 

std::transform(v.begin(), v.end(), v.begin(), // C++14 

                       [](double d) 

                       {                   

                         … 

                         return std::sqrt(std::abs(d)); 

                       }); 
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All functions can deduce return types 
 Deduction is based on function definition 

 Allowing non-defining function declarations with auto return type is not strictly necessary, 
but it is useful for coding styles that prefer to define member functions outside the class:  

struct A {  

  auto f(); // forward declaration  

};  

auto A::f() { return 42; } 

 Leading auto still required for non‐lambdas, but allow non-defining declarations so long as 
all declarations have the same declared type, without considering the deduced type 

auto f(); // return type is unknown; C++14; return type to be deduced 

auto f() { return 42; } // return type is int  

auto f(); // redeclaration  

int f(); // error, declares a different function 

 And works for templates: 

template <class T> auto g(T t); // forward declaration  

template <class T> auto g(T t) { return t; } // return type is deduced at instantiation time  

template <class T> auto g(T t); // redeclaration 
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How to use auto reduction on normal functions 
 Of course, using such a function in an expression when only a forward 

declaration has been seen is ill-formed:  

auto f(); // return type is unknown  

int i = f(); // error, return type of f is unknown 

 An explicit specialization or instantiation of an auto template must also use 
auto. An explicit specialization or instantiation of a non-auto template must not 
use auto.  

template <class T> auto f(T t) { return t; } // #1  

template auto f(int); // OK  

template char f(char); // error, no matching template  

template<> auto f(double); // OK, forward declaration with unknown return type  

template <class T> T f(T t) { return t; } // OK, not functionally equivalent to #1  

template char f(char); // OK, now there is a matching template  

template auto f(float); // OK, matches #1 
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Deducing with multiple returns and Recursion 
 Multiple returns permitted if same type deduced for each: 

auto iterate(int len) // C++11 error, body isn't "return expr;" , allowed in C++14 

{  

 for (int i = 0; i < len; ++i)  

   if (search (i))  

     return i;  

 return -1;  

} 

 Recursion:One important difference between lambdas and normal functions is that normal functions can 
refer to themselves by name. Of course, we can't deduce the return type that way:  

auto h() { return h(); } // error, return type of h is unknown  

 but once we have deduced a return type, there is no reason to prohibit recursion.  

auto sum(int i) {  

  if (i == 1)  

    return i; // return type deduced to int  

  else  

    return sum(i-1)+i; // ok to call it now 

} 
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Lambda Closure Summary and Guideline 
 Lambda expressions generate closures. 

 Calling state can be captured by value or by reference. 

 Return types, when specified, use trailing return type syntax. 

 Closures can be stored using auto or std::function. 

 Be alert for dangling references/pointers in stored closures. 

 Short, clear, context‐derived lambdas are best. 

 C++14 adds support for auto parameters, generalized captures, and 
less restrictive return type deduction 

 Enable lambda as: 
const initializers 
Container comparison 
Variadic polymorphic lambdas 
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BikeShed! 
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“And if digits should grow wings?” 
 Numeric literals of more than a few digits are hard to read.  
Pronounce 7237498123. 
Compare 237498123 with 237499123 for equality. 
Decide whether 237499123 or 20249472 is larger. 

 Most common:a comma, base-line dot, and a (thin) space, 7 237 498 123 
 None of these work due to ambiguities 

 What would you suggest? 
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Alternatives for growing wings on literals _42_ 
 Grave accent `: 7`237`498`123 

 Single Quote: 7'237'498'123 

 Underscore: 7_237_498_123 

 Double underscore:  
 1_ => 1 

1_2 => 12 
1__2 => value 1 passed to operator "" _2 
0xdead_bee_f => 0xdeadbeef 
0xdead_bee__f => value 0xdeadbee passed to operator "" _f  

 Scope operator : size_t memsize = 11::B; 

 Non-Digit Literal Suffix: 0xdead_beef_db 

 Spacing 

 Double radix point: .. 

 Backslash: \ 
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One solution from April 2013 Bristol C++ Std meeting 
 

 12, 014, or 0XC, 123_456 and 12LL are integer-literals 

 1048576, 1_048_576, 0X100000, 0x10_0000 

 1.602_176_565e-19 and 1.602176565e-19 

 123_km and 123.._km are user-defined-literals 
10_10 changes from integer 10 with a suffix of _10 to an integer 1010 
original meaning can be restored with 10.._10 
0x1234_goo has suffix _goo but the literal 0x1234_foo has suffix oo. The 

0x1234.._foo has suffix _foo. 

54 



IBM Software Group | Rational software 

C++14 Language updates 

 N3472: Binary literals: 
0b10001111 

 N3639/N3497: VLA: 1D, no 
sizeof 

 N3638/N3582: Normal 
functions can have their 
returns deduced 

 N3648/N3610: move capture 
in lambdas 

 N3652/N3605: relax rules to 
allow member init in 
aggregate classes 

 

 N3652 

struct Univ { 

    string name; 

    int rank; 

    string city = "unknown"; 

}; 

  

void t1() 

{ 

    Univ u = {"Columbia",10}; 

    cout << u.name << ' ' << u.rank 
<< ' ' << u.city << '\n'; 

} 
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C++14 Language 

 N3667/core1402: relax rules 
to delete implicitly defined 
move functions 

 N3652/N3597:relax const 
expr functions 

 N3499: digit separator  

 N3664/N3537: batch 
new/delete 

 N3651/N3615:constexpr 
template 

 N3649/N3559: polymorphic 
lambdas 

 N3323: tweak conextual 
conv 

 N3651 
struct matrix_constants { 

   template<typename T> 

      using pauli = hermitian_matrix<T, 
2>; 

   template<typename T> 

      constexpr pauli<T> sigma1 = { { 0, 
1 }, { 1, 0 } }; 

   template<typename T> 

      constexpr pauli<T> sigma2 = { { 0, 
-1i }, { 1i, 0 } }; 

   template<typename T> 

      constexpr pauli<T> sigma3 = { { 1, 
0 }, { -1, 0 } }; 

} 
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C++14 Library 

 N3545: adds constexpr 
operator() to integral_constant 

 N3644: null forward iterator can 
be compared and value init 

 N3668/N3511/N3608: allow 
exchange on non-atomics 

 N3658/N3493: template<int...> 
struct index_sequence { }; 

 N3670/N3584: can address 
tuples by types 

 N3671/N3601: adding overloads 
for std::equal, std::mismatch, 
and std::is_permutation to 
accept two ranges. 

 N3670 

tuple<string, string, int> t("foo", "bar", 
7);  

int i = get<int>(t); // i == 7 

int j = get<2>(t); // Equivalent to 
the above: j == 7 

string s = get<string>(t); // 
Compile-time error. 
Ambiguous 

 N3671 

vector<int> v1 = { 1, 4 9 };  

vector<int> v2 = { 1, 4, 9, 16, 25, 36, 
49 };  

vector<int> v3 = { 1, 2, 3, 4 };  

assert(!equal(v1.begin(), v1.end(), 
v2.begin(), v2.end()); 
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C++14 Library 

 N3656/N3588: adds 
make_unique 

 N3642/N3531: adds UDL 
suffixes for time 
(h,min,s,ms,us,ns) and string(s) 

 N3660/N3531: adds UDL suffix 
for complex imaginary literal 

 N3665: synchronize streams 

 N3654/N3570: 
Boost.Component on embedded 
space 

 N3654 
std::stringstream ss;  

std::string original = "foolish me";  

std::string round_trip;    

ss << original;  

ss >> round_trip;    

std::cout << original;   // outputs: foolish me  

std::cout << round_trip; // outputs: foolish    

assert(original == round_trip); // assert will fire 

 

std::stringstream ss;  

std::string original = "foolish me";  

std::string round_trip;    

ss << quoted(original);  

ss >> quoted(round_trip);    

std::cout << original;     // outputs: foolish me  

std::cout << round_trip;   // outputs: foolish me    

assert(original == round_trip); // assert will not fire 
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C++14 Library 

 N3645/N3586: adds splice to 
maps and sets, extracts to 
associative/unordered 

 N3657/N3456: adds 
heterogeneous comparison 
lookups 

 N3672/N3527: adds class 
template options<T> 

 N3669: adds const back to 
constexpr for library functions 

 N3655/N3546: adds template 
aliases to Transformation traits 

 N3662/N3532: dynarray <T> 
supports zero-sized arrays and 
can be looked at with decltype 

 N3421: improves <functional> 

 N2462: improves result_of in 
SFINAE 

 N3302: constexpr complex lib 

 N3470: constexpr container lib 

 N3469: constexpr chrono lib 

 N2471: constexpr util lib 

 N3672 

cin >> s; 

optional<int> o = str2int(s); // 'o' may or 
may not contain an int 

if (o) { // does optional contain a value? 

   return *o; // use the value 

} 
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Food for thought and Q/A 
 This is the chance to get a copy before you have to pay for it: 
C++ : http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2011/n3291.pdf 
C++ (last free version): http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf 
C: http://www.open-

std.org/jtc1/sc22/wg14/www/docs/n1570.pdf 
 Participate and feedback to Compiler 
What features/libraries interest you or your customers? 
What problem/annoyance you would like the Std to resolve? 
Is Special Math important to you? 
Do you expect C++11 features to be used quickly by your 

customers? 

 Talk to me at my blog: 
http://www.ibm.com/software/rational/cafe/blogs/cpp-

standard 
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My blogs and email address 
 http://isocpp.org/wiki/faq/wg21:michael-wong 

OpenMP CEO:  http://openmp.org/wp/about-openmp/  
My Blogs:   http://ibm.co/pCvPHR  
C++11 status:  http://tinyurl.com/43y8xgf  
Boost test results    
 http://www.ibm.com/support/docview.wss?rs=2239&context=SSJT9L&uid=s
wg27006911  
C/C++ Compilers Support/Feature Request Page  
 http://www.ibm.com/developerworks/rfe/?PROD_ID=700  
TM:    https://sites.google.com/site/tmforcplusplus/  

 
 Chair of WG21 SG5 Transactional Memory 
 IBM and Canada C++ Standard Head of Delegation 
 ISOCPP.org Director, Vice President  
 Vice Chair of Standards Council of Canada Programming Languages 

 Tell us how you use OpenMP: 
 http://openmp.org/wp/whos-using-openmp/ 
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3.-4. Mai in Ohlstadt 
C++ ? FRAGEN 
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Ich freue mich  
auf Ihr Feedback! 

Hat Ihnen mein Vortrag 
gefallen? 
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Veranstalter: 

C++ 

Vielen Dank! 
Michael Wong 

michaelw@ca.ibm.com 
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