
C++14: Through the Looking Glass
 with apology to Lewis Carroll

Michael Wong
International Standard Trouble Maker, Chief Mad Hatter

michaelw@ca.ibm.com
http://isocpp.org/wiki/faq/wg21:michael-wong

© 2013 IBM Corporation

mailto:michaelw@ca.ibm.com�

IBM Software Group | Rational software

Acknowledgement and Disclaimer
 Numerous people internal and external to the original WG21, in

industry and academia, have made contributions, influenced ideas,
written part of this presentations, and offered feedbacks to form part of
this talk.

 I even lifted this acknowledgement and disclaimer from some of them.

 But I claim all credit for errors, and stupid mistakes. These are mine,
all mine!

 Any opinions expressed in this presentation are my opinions and do
not necessarily reflect the opinions of IBM.

IBM Software Group | Rational software

IBM Rational Disclaimer

 © Copyright IBM Corporation 2013. All rights reserved. The information contained
in these materials is provided for informational purposes only, and is provided AS IS
without warranty of any kind, express or implied. IBM shall not be responsible for
any damages arising out of the use of, or otherwise related to, these materials.
Nothing contained in these materials is intended to, nor shall have the effect of,
creating any warranties or representations from IBM or its suppliers or licensors, or
altering the terms and conditions of the applicable license agreement governing the
use of IBM software. References in these materials to IBM products, programs, or
services do not imply that they will be available in all countries in which IBM
operates. Product release dates and/or capabilities referenced in these materials
may change at any time at IBM’s sole discretion based on market opportunities or
other factors, and are not intended to be a commitment to future product or feature
availability in any way. IBM, the IBM logo, Rational, the Rational logo, Telelogic, the
Telelogic logo, and other IBM products and services are trademarks of the
International Business Machines Corporation, in the United States, other countries
or both. Other company, product, or service names may be trademarks or service
marks of others.

IBM 3

IBM Software Group | Rational software

4

IBM Rational Cafes – Connecting Communities
 Accelerate your enterprise modernization

efforts by becoming a member of the Cafe
communities

 Ask questions, get free distance learning,
browse the resources, attend user group
webcasts, read the blogs, download trials,
and share with others

 Cafes have forums, blogs, wikis, and more

 Languages covered:
C/C++, COBOL, Fortran, EGL, PL/I, and
RPG

 Products covered:
 • COBOL for AIX®

• Enterprise COBOL for z/OS®
• Enterprise PL/I for z/OS
• Host Access Transformation Services
• PL/I for AIX
• Rational® Business Developer
• Rational Developer for Power Systems Software™
• Rational Developer for i for SOA Construction
• Rational Developer for System z
• Rational Developer for System z Unit Test
• Rational Team Concert™
• XL C for AIX
• XL C/C++ for AIX/Linux ®
• XL Fortran for AIX/Linux
• XL C/C++ for z/VM
• z/OS XL C/C++

Become a member and join the conversation!
ibm.com/rational/café

Continue the conversation

facebook.com/IBMcompilers

@IBM_Compilers

xl_compiler@ca.ibm.com

IBM Software Group | Rational software

© 2011 International Business Machines Corporation 5

Enterprise Modernization: The Cornerstone of Smarter Computing

IBM Enterprise Modernization Sandbox
Realize the value of your investments in assets, skills and infrastructure within
minutes

Try it firsthand within minutes today!
ibm.com/playinthesandbox

 Learn how to revitalize applications, empower people,
unify teams and exploit infrastructure based on your

knowledge and experiences

 See firsthand the tangible value Rational tools can bring
to your business

 Get a fast start with scripted scenarios
and best practice education materials

at no cost available 24x7

 Access a low risk way to try several new offerings and
integrated solutions without

disturbing your existing environment

Deployed in
IBM’s own

data centers

Browser availability

through an easy
Citrix plug-in install!

http://www.ibm.com/developerworks/downloads/emsandbox/�

IBM Software Group | Rational software

Slide 6 of 8

Agenda
 “The time has come,” the ISO said, “To talk of many things:
Of move-capture—
and literals—
Of making lambdas sing—
And why deduction is so hot—
And if digits should grow wings?”

IBM Software Group | Rational software

C++11 is ratified, but I am missing fingers and toes
 You can capture by copy or by reference, but why do we not

have move capture in lambdas?

 You created User-defined literals, so how about some real
user-defined literal suffixes?

 We love monomorphic lambdas to supplant std::bind, but why
did you stop there?

 If lambda returns can be deduced, why not normal functions?

 Can/should we get digit separators?

7

IBM Software Group | Rational software

Compute Less!
 1983, July 23: Air Canada flight 143 (Gimli Glider) a Boeing 767-233,

ran out of fuel at 41,000 ft. Miraculously, no one died!
 Instead of 22,300 kg of fuel, they had 22,300 lbs (10,100 kg)
Using 1.77 kg/L conversion , the weight of a litre of fuel in pounds
Not the correct .803 kg/L

 1999, Sept 23, Mars Climate Orbiter, costing $654M USD was lost due
to navigation error
Software error did not use metric units in the ground software
Thruster performance data in Imperial units
What was lost
 Lifetime work of 200 engineers
 Mission scientific results
 But we were all taught since high school to verify units are correct in

computations
 Why didn’t experts in their own field do that

8

IBM Software Group | Rational software

Units Programming
 No mainstream programming languages support units
But every language can encode a value as {quantity,unit} pair
 Unit can be every SI unit (meters, kg)
Why not do that?
 Double the size of our data
 Checking in every computation would double computations

 Space probes have memory and compute limits just like cell
phones
So engineers tries to keep track of units in their heads, in comments

or in docs
Here, they lost
 Compilers don’t read docs, comments or minds, yet

9

IBM Software Group | Rational software

Why don’t we support units?
 If a number crossed an interface without its units, it took on a

whole new meaning
Here it changed by 4.45
Integers and floating-point numbers are unsafe interfaces

 So why don’t general purpose languages support units
It can’t be because it is hard to check at compile time, because it

isn’t
Probably Historical, but also variety of other reasons
 Different unit systems, markers to help concurrency, timing

constraints
 Can’t build in every notion, so language designers prefer to do

nothing

10

IBM Software Group | Rational software

C++11 Unit Programming
 How about a tool or specialized language to supply SI units
Yes, but features work best when they are integrated into GP langs
 Not as separate tool chains, or special languages which don’t

work well with other special lang or tools

 Expressive enough lang can support it and get compile-time
unit checking
Define speed as a template and unit part of the type with quantity as

a runtime value

11

IBM Software Group | Rational software

C++98/03 SI unit from Bjarne’s GN keynote 2012

template <int M, int K, int S>

struct Unit{

 enum { m=M, kg=K, s=S};

};

template<typename Unit> //
magnitude with unit

struct Value {

 double val; // the magnitude

 explicit Value(double d)

 : val(d) {} // construct a Value
from a double

};

Speed sp1 = Value<1,0,0>
(100)/ Value<0,0,1> (9.8); //
very explicit

Speed sp1 = Value<M> (100)/
Value<S> (9.8); // use a
shorthand notation

Speed sp1 =
Meters(100)/Seconds(9.8); //
abbreviate further still

Speed sp1 = M(100)/S(9.8); //
this is getting cryptic

12

IBM Software Group | Rational software

C++11 User defined literals for SI units

using Second = Unit<0,0,1>; // s

using Second2 = Unit<0,0,2>; // s*s

constexpr

Value<Second> operator”” s(long double d)

// a f-p literal suffixed by 's'

{

return Value<Second> (d);

}

constexpr

Value<Second2> operator”” s2(long double
d)

// a f-p literal suffixed by 's2'

{

return Value<Second2 > (d);

}

Speed sp1 = 100m/9.8s; // very
fast for a human

Speed sp2 = 100m/9.8s2; //
error (m/s2 is acceleration)

Speed sp3 = 100/9.8s; // error
(speed is m/s and 100 has
no unit)

Acceleration acc = sp1/0.5s; //
too fast for a human

13

IBM Software Group | Rational software

Type-Rich Programming at Compiler Time
 Improve code quality without runtime costs

 Use a static type system and moves checking to compile time

 Move as much as possible into compile time computation
 Done for decades either as programmers pre-computed magic numbers and added them as input data
 C macros are un-typed and is error prone
 For infrastructure code, this is not good enough

 Need a systematic structured approach Bjarne called type-rich programming at compile-
time

 Project forward for concurrency, it becomes more then an approach but a requirement
 No data race on constants

14

IBM Software Group | Rational software

“and literals”
 Motivation:
 Make literals be user-definable, just like classes
 Allows us to specify new literals for future C++ extensions
 SI units, new strings, Arbitrary precision integers,

 Natural syntax for initialization, instead of using constructors
 C portability, e.g. Decimal Floating-point literals

 Solution: User-defined Literal or UDL
 Any built-in literal without a suffix can concat with an identifier suffix to be a new literal
 23 OK but not 23LL

 UDL suffix is just an Unqualified call to a new kind of literal operator
 X operator ”” suffix (<parameters>);
 X is arbitrary return type
 Suffix is an identifier literal suffix mapping to this call
 <parameters> is described later

 Cool, but can it handle prefixes, or both pre/suffixes?
 No

 Ok, how many actual UDLs are in C++11?
 None!

15

IBM Software Group | Rational software

Rules for Users
 Can only use suffixes with _: 32.5_km (library can define w/o _)
Calls operator ”” _km(32.5L)
constexpr Kilometers operator ”” _km(long double dist) {
 return Kilometers{Kilometers::convDouble2km{},

static_cast<double>(dist)};
}
Kilometers distance=32.5_km;
Kilometers distance=19.2_miles; //Can convert inside the op func
Kilometers distance=19.2_miles+32.5_km; //more then one literal can

return the same type, if you convert inside, and define operator +

 Can mix builtin strings literals with UDLs
L”long: “ “I/O error”_s

 2 distinct groups
Raw and cooked literals

16

IBM Software Group | Rational software

Cooked String literals
std::string operator ””_ws (const wchar_t * s, size_t length) {
 return std::wstring{s, length};
}
L”I18N”_ws // operator ”” (L”I18N”,4);
Can be concatenated like other string literals
 All components must be the same suffixes

– L”log “ “ I/O Error”s //OK
– ”log “x “ I/O Error”s //Error

17

IBM Software Group | Rational software

Cooked literals
 Form (takes precedence over upcoming raw-form)
X operator ”” suffix (unsigned long long);
X operator ”” suffix (long double);
 Sign is a unary prefix operator of an unsigned number
X operator ”” suffix (const char*, size_t); //and wchar_t, char16_t,

char32_t when it is L prefix, u prefix or U prefix
 Number of characters is passed as second argument

X operator ”” suffix (char); // and wchar_t, char16_t, char32_t when it
is L prefix, u prefix or U prefix

 Still runtime evaluation, just a call

18

IBM Software Group | Rational software

Raw literal operators

Sequence of characters in the original source + first 6 phases of

translation (macro expand, string literal concat …)
Significant information is lost in cooked form
 1.2e-3DF is not the same as .0012
 798387429349873942854858439594343839x have no valid

cooked form
Transforms raw form of numerical (float and integer)
Needed when UDL suffix changes the meaning of digits in literal
Form (cannot see both form in namelookup or same scope)
 X operator ”” suffix (char const *); //still not compile time if it

throws
 template <char …> X operator ”” suffix();

– Variadic template form with constexpr uses TMP for compile-
time value

19

IBM Software Group | Rational software

Compile-time constants
 To ensure compile-time evaluation, need to use literal operator

templates

 Need to be implemented using recursion and template

 Error checking at compile time through static_assert, not throw

 Uses unpacking of parameter packs to build a new value/type

 Performance: full use of TMP will increase compile time
Compared to built-in types
 Another motivation for a builtin binary type

20

IBM Software Group | Rational software

UDL idioms and guidelines
 They use built-in types and are never found through ADL, tempting to

put into global namespace …
But Don’t define UDL operators in global namespace
Don’t have a global using-declaration
 _us (is it a micro-sec or US dollar?)

 Surround it with namespace, and further nest a namespace specify the
literal operator, in your own header file
Don’t use a using declaration in your header to import the literals to global ns
 Ignore my suggestion in N2750 to add the using directive in the same header

file (which postpone the compilation error)
 Only ambiguous when you use the literal
 But Still ambiguous with 2 libs defining the same

 Instead, add a using directive so you can import the literal you want, or a
namespace declaration for the operator you really want

21

IBM Software Group | Rational software

Binary Literal operator template by Daniel Krügler
#include <type_traits>

#include <cstdint>

namespace tools {
namespace details {

template<class...> struct and_;

template<>
struct and_<> : std::true_type { };

template<class B1>
struct and_<B1> : B1 { };

template<class B1, class B2>
struct and_<B1, B2> : std::conditional<B1::value, B2,
B1>::type { };

template<class B1, class B2, class B3, class... Bn>
struct and_<B1, B2, B3, Bn...> :
std::conditional<B1::value,
 and_<B2, B3, Bn...>, B1 >::type { };

template<char...>
struct binary_to_decimal;

template<>
struct binary_to_decimal<> {
 static constexpr std::uintmax_t value = 0;
};

 template<char D1, char... Dn>
struct binary_to_decimal<D1, Dn...> {
 static constexpr std::uintmax_t value =
 (UINTMAX_C(1) << sizeof...(Dn)) * (D1 - '0') +
 binary_to_decimal<Dn...>::value;
};

template<char D>
struct is_binary_digit : std::integral_constant<bool,
 D == '0' || D == '1‘ >
{
};

} // details

template <char... Digits> constexpr std::uintmax_t
operator "" _b()

 {

 static_assert(details::and_<details::is_binary_digit<
 Digits>...>::value,
 "binary digits must be 0 or 1");
return details::binary_to_decimal<Digits...>::value;
}

}

22

IBM Software Group | Rational software

Binary Raw Literal
#include <type_traits>

#include <cstdint>

namespace tools {
namespace details {

struct invalid_arg {};

constexpr std::size_t cstrlen_impl(const char* s,
std::size_t i)
{
 return s[i] ? cstrlen_impl(s, i + 1) : i;
}

constexpr std::size_t cstrlen(const char* s)
{
 return s ? cstrlen_impl(s, 0) : throw
invalid_arg{};
}

constexpr unsigned to_val(char c)
{
 return (c == '0') ? 0 : (c == '1') ? 1 : throw
invalid_arg{};
}

 constexpr std::uintmax_t
binary_to_decimal_impl(const char* digits,
std::size_t i, std::size_t n)
{
 return (i != n) ? (UINTMAX_C(1) << (n - 1 - i)) *
to_val(digits[i]) +
 binary_to_decimal_impl(digits, i + 1, n) : 0;
}

constexpr std::uintmax_t
binary_to_decimal(const char* digits)
{
 return digits ?
 binary_to_decimal_impl(digits, 0,
cstrlen(digits))
 : throw invalid_arg{};
}

} //details

constexpr std::uintmax_t operator "" _b(const char*
digits)

 {
return details::binary_to_decimal(digits);
}

}

23

IBM Software Group | Rational software

main()
int main(){

using tools::operator"" _b;

static_assert(0_b == 0, "Ouch");
static_assert(1_b == 1, "Ouch");
static_assert(01_b == 1, "Ouch");
static_assert(10_b == 2, "Ouch");
static_assert(11_b == 3, "Ouch");
static_assert(00011_b == 3, "Ouch");
static_assert(1000_b == 8, "Ouch");
static_assert(1111_b == 15, "Ouch");
static_assert(101101110111000001100101110_b == 96174894, "Ouch");
static_assert(1110001100001010001001100011111101_b == 15236372733, "Ouch");

auto i = 10001000100010001000100010001000_b;
auto j = 1000100010001000100010001000100010_b;

static_assert(std::is_same<decltype(i), unsigned int>::value, “Not unsigned"); //This will print Not unsigned
static_assert(std::is_same<decltype(j), unsigned long long>::value, Not unsigned long long");

}

24

IBM Software Group | Rational software

To ””b or not to ””b aka Binary Literals prefix

User defined literals
using namespace

std::binary_literals;

auto x=100b; // int x=4

auto y=1000bu; // unsigned y=8

auto
xll=0111111111111111111111
1111111111111111111111111
11111111111111111b;

// long long xll

C+14 binary literals
 These are identical

i = 42;

i = 0x2a;

i = 052;

i = 0b101010;

25

IBM Software Group | Rational software

C++14 UDL suffixes
 use an inline namespace std::literals for all such UDL

namespaces

 overloads for operator"" s() can be used for std::string and
std::chrono::duration, because the parameter is different.

 keep s for std::string and std::string_ref should propose a
different suffix such as sr or sv if it is std::string_view

 C++14 UDL suffixes
std::basic_string, suffix s in inline namespace

std::literals::string_literals

 std::chrono::duration, suffixes h, min, s, ms, us, ns in inline
namespace std::literals::chrono_literals

26

IBM Software Group | Rational software

Future UDL suffixes
 More UDL suffixes for other integral types

 Only lower case suffixes

 Complex type literal suffixes

 Namespace idiom
all suffixes for user defined literals in separate inline namespaces

that are below the inline namespace std::literals
To import all literals from the Std:

using namespace std::literals;
To import all literals from the Std of a specific type:

using namespace std::string_literals

27

IBM Software Group | Rational software

Time and time again

User defined literals (Real)
using namespace

std::chrono_literals;

auto constexpr aday=24h;

auto constexpr
lesson=45min;

auto constexpr
halfanhour=0.5h;

std::chrono::duration
 h

 min

 s

 ms

 ns

28

IBM Software Group | Rational software

“Of making lambdas sing”

C++03
struct functor

{

 int &a;

 functor(int& _a) : a(_a) { }

 bool operator()(int x) const

 {

 return a == x;

 }

};

 int a = 42;

 count_if(v.begin(), v.end(), functor(a));

C++11

int a = 42;

count_if(v.begin(), v.end(),
[&a](int x){ return x == a;});

//C++14

count_if(v.begin(),v.end(),[&a]
(auto x){return x == a;});

29

IBM Software Group | Rational software

Lambda closures

Caller Closure

 a=1
 b=2
 a=12 b=22
 a=12 b=22
 a=37 b=22

C++11

void caller()

{

int a = 1;

int b = 2;

[&](){a = 12;b = 22;}();

[=]() mutable{a = 13;b = 15;}();

[=,&a]() mutable{a = 37;b = 29;}();

}

30

a=12 b=22

a=13 b=15

a=37 b=29

IBM Software Group | Rational software

Lambda closures

Caller Closure

 a=33 b=16 z=49
 a=33 b=17 z=50
 a=33 b=18 z=51

C++11
void caller()

{

int a = 42;

int b = 15;

auto c = [=]() mutable{a = 33;++b; int
z = a + b; return z; };

c();

c();

c();

}

31

 a=42

 b=15

 a=42 b=15

 a=42 b=15

 a=42 b=15

IBM Software Group | Rational software

Lambda == Functor (borrowed from Herb Sutter)

(params) -> ret { statements; }

class __functor {

};

[captures]

private:
 CaptureTypes __captures;
public:
 __functor(CaptureTypes captures)
 : __captures(captures) { }

 auto operator() (params) -> ret
 { statements; }

IBM Software Group | Rational software

Lambda gotchas with ‘this’

 one variable that
can be captured
without mentioning
its name: this
This is invisible
Capture of members

variables by reference
even if you wrote [=]
member variables

cannot be captured by
value at all

void myclass::myfunc(int x) {
yeti y;
auto lambda = [=] {
 f(x); // x captured by value
 y.g(); // y captured by value
 cout << z; // this captured by

value if z is a member
variable…

 // … and z is captured as
if by reference

};

}

IBM Software Group | Rational software

Lambdas == Functors inside of a class

(params)

class __functor {

};

[captures]

private:
 C *const __this;
 CaptureTypes __captures;
public:
 __functor(C* this, CaptureTypes captures)
 : __captures(captures) { }

 auto operator() (params) const -> ret
 { statements; } // const C* const

Class C {

};

->ret { statements; }

IBM Software Group | Rational software

Don’t modify a lambda capture of a local variable
 lambda is automatically const, need to deliberately made mutable

int val = 0;

auto x = [=](item e) // look ma, [=] means explicit copy

{ use(e, ++val); }; // error: val is const, need ‘mutable’

auto y = [val](item e) // darnit, I really can’t get more explicit

{ use(e, ++val); }; // same error: val is const, need ‘mutable’

 Is this better?

void f(int count) { // pass by value – explicit copy …
do_something_with(++count); // ok, modify my copy – no weird
‘mutable’ needed … }

int count = 0;

f(count); // ok, pass a copy

35

IBM Software Group | Rational software

Lambdas == Functors inside of a class with Mutable

class __functor {

};

[captures]

private:
 C *const __this;
 CaptureTypes __captures;
public:
 __functor(C* this, CaptureTypes captures)
 : __captures(captures) { }

 auto operator() (params) const -> ret
 { statements; } // C* const

Class C {

};

mutable

Exception Specification!
& Attributes

(params) ->ret { statements; }

IBM Software Group | Rational software

C++11 lambda recap from Scott Meyers cpp-notes
 A quick way to create function objects at their point of use.

 Closures may outlive their creating function:
Non‐static locals referenceable only if “captured.”
 Capturing locals puts copies in closures
 Captures may also be by reference
 Different (non‐static) locals may be captured differently:
Variables of static storage duration always referenceable.
 Not allowed to capture them

 Capture mode defaults may be specified
Default overridable on a per‐variable basis

 To access class members within a member function, capture
this

 Lambdas without parameters may omit the parameter list.

37

IBM Software Group | Rational software

Other problems with monomorphic C++11 lambdas
 lambdas are a hit, but…
Mr/Ms compiler, why can’t you deduce my parameter type?

std::for_each(begin(v), end(v),
[](decltype(*begin(v)) x){ std::cout << x; });

auto get_size =
[](std::unordered_multimap<std::wstring,std::list<s
td::string> > const& m){ return m.size(); };

 will be in C++14:

std::for_each(begin(v), end(v), [](auto & x){
std::cout << x; });

auto get_size = [](auto & m){ return m.size(); };

38

IBM Software Group | Rational software

Generic Lambdas

C++11
auto lambda = [](int x, int y)

{return x + y;}

struct unnamed_lambda {

 auto operator()(int x, int y)
const {return x + y;}

};

C++14
auto lambda = [](auto x,

auto y) {return x + y;}

struct unnamed_lambda {
template<typename T,
typename U> auto
operator()(T x, U y) const
{return x + y;}

};

39

IBM Software Group | Rational software

Enter the Generic lambda

class __functor {

};

[captures]

private:
 C *const __this;
 CaptureTypes __captures;
public:
 __functor(C* this, CaptureTypes captures)
 : __captures(captures) { }

 template<typename Ti >
 void operator()(Ti params)
 { statements; } // const C* const

Class C {

};

(auto params) ->ret { statements; }

IBM Software Group | Rational software

“Of move-capture “
How to capture std::unique_ptr “by move” for a lambda in std::for_each
  From http://stackoverflow.com/questions/10280937/how-to-

capture-stdunique-ptr-by-move-for-a-lambda-in-stdfor-each

std::array<int,4> arr = {1,3,5,6};

std::unique_ptr<int> ptr(new int); (*ptr) = 3;

std::for_each(arr.begin(), arr.end(), [ptr](int& i) { i+=*ptr; });

 doesn't work because unique_ptr doesn't have a copy
constructor. c++0x doesn't specify the pass by move syntax.

 How about capture by reference?

std::for_each(arr.begin(), arr.end(), [&ptr](int& i) { i+=*ptr; });

 OK compiles, but there may be dangling reference

41

http://stackoverflow.com/questions/10280937/how-to-capture-stdunique-ptr-by-move-for-a-lambda-in-stdfor-each�
http://stackoverflow.com/questions/10280937/how-to-capture-stdunique-ptr-by-move-for-a-lambda-in-stdfor-each�
http://stackoverflow.com/questions/10280937/how-to-capture-stdunique-ptr-by-move-for-a-lambda-in-stdfor-each�
http://stackoverflow.com/questions/10280937/how-to-capture-stdunique-ptr-by-move-for-a-lambda-in-stdfor-each�
http://stackoverflow.com/questions/10280937/how-to-capture-stdunique-ptr-by-move-for-a-lambda-in-stdfor-each�

IBM Software Group | Rational software

C++11 Lambda Capture Workaround from Anthony Williams

#include <iostream>

#include <utility>

#include <memory>

template<typename T>

struct move_on_copy_wrapper

{

 mutable T value;

 move_on_copy_wrapper(T&& t):

 value(std::move(t)) {}

 move_on_copy_wrapper(move_on_copy_wrapper const& other):

 value(std::move(other.value)) {}

 move_on_copy_wrapper(move_on_copy_wrapper&& other):

 value(std::move(other.value)) {}

 move_on_copy_wrapper& operator=(move_on_copy_wrapper const&
other)

 {

 value=std::move(other.value);

 return *this;

 }

 move_on_copy_wrapper& operator=(move_on_copy_wrapper&& other)

 {

 value=std::move(other.value);

 return *this;

 }

};

int main()

{

 std::unique_ptr<int> p(new int(3));

move_on_copy_wrapper<std::unique_ptr
<int>> mp(std::move(p));

 [mp]()

 {

std::cout<<"*mp.value="<<*mp.value<<st
d::endl;

 } ();

 std::cout<<"p="<<p.get()<<",
mp="<<mp.value.get()<<std::endl;

}

42

IBM Software Group | Rational software

Move capture in C++14 lambdas
 Did not just add move capture, but added generalized capture initialization to allow

captured members to be initialized by arbitrary expressions
 Allows capture by move and declaring arbitrary members of the lambda, without a corresponding

named variable in the outer scope

[x { move(x) }, y = transform(y, z), foo, bar, baz] { ... }
 x is direct initialized by moving x
 Y is copy initialized by calling transform
 Rest are captured by value

 So no capture by && like [&&x] { …}
 We are not capturing by rvalue ref, we are moving

{

 auto ptr = std::make_unique<int>(10);

 return [ptr{std::move(ptr)}] // move ptr into closure;

 { return *ptr; }; // C++14 only

}

43

IBM Software Group | Rational software

Move Capture Generic lambda

class __functor {

};

[captures{std::move(captures)}]

private:
 C *const __this;
 std::unique_ptr<CaptureTypes> __captures;
public:
 __functor(C* this,
std::unique_ptr<CaptureTypes>&& captures)
 : __captures(std::move(captures)) { }

 template<typename Ti >
 void operator()(Ti params)
 { statements; } // const C* const

Class C {

};

(auto params) ->ret { statements; }

IBM Software Group | Rational software

C++11 Deduce, deduce, deduce
 C++ 11 deductions were minimal, just in lambda (don’t confuse it with auto type

inference in C++11):
 Optional when:
 Return type is void.
 Lambda body is “return expr;”

– Return type is that of expr.
 Otherwise must be specified via trailing return type syntax.
 Must be used with lambdas (when a return type is given).
 Often useful with decltype
 Permitted with a leading auto

 BUT, why can’t I do that on normal functions?
auto f()? auto A::f() { return 42; }
Well, should it be on declaration, definition, forward declarations, redeclarations,

member functions?
 How about recursive functions, functions with multiple returns?
 Lots more questions and issues but I will cover a few cases

45

IBM Software Group | Rational software

“And why deduction is so hot”
 Lambda deduction has been improved to support multiple

statements
std::vector<double> v;

…

std::transform(v.begin(), v.end(), v.begin(), // C++11

 [](double d)->double

 {

 …

 return std::sqrt(std::abs(d));

 });

std::transform(v.begin(), v.end(), v.begin(), // C++14

 [](double d)

 {

 …

 return std::sqrt(std::abs(d));

 });

46

IBM Software Group | Rational software

All functions can deduce return types
 Deduction is based on function definition

 Allowing non-defining function declarations with auto return type is not strictly necessary,
but it is useful for coding styles that prefer to define member functions outside the class:

struct A {

 auto f(); // forward declaration

};

auto A::f() { return 42; }

 Leading auto still required for non‐lambdas, but allow non-defining declarations so long as
all declarations have the same declared type, without considering the deduced type

auto f(); // return type is unknown; C++14; return type to be deduced

auto f() { return 42; } // return type is int

auto f(); // redeclaration

int f(); // error, declares a different function

 And works for templates:

template <class T> auto g(T t); // forward declaration

template <class T> auto g(T t) { return t; } // return type is deduced at instantiation time

template <class T> auto g(T t); // redeclaration

47

IBM Software Group | Rational software

How to use auto reduction on normal functions
 Of course, using such a function in an expression when only a forward

declaration has been seen is ill-formed:

auto f(); // return type is unknown

int i = f(); // error, return type of f is unknown

 An explicit specialization or instantiation of an auto template must also use
auto. An explicit specialization or instantiation of a non-auto template must not
use auto.

template <class T> auto f(T t) { return t; } // #1

template auto f(int); // OK

template char f(char); // error, no matching template

template<> auto f(double); // OK, forward declaration with unknown return type

template <class T> T f(T t) { return t; } // OK, not functionally equivalent to #1

template char f(char); // OK, now there is a matching template

template auto f(float); // OK, matches #1

 48

IBM Software Group | Rational software

Deducing with multiple returns and Recursion
 Multiple returns permitted if same type deduced for each:

auto iterate(int len) // C++11 error, body isn't "return expr;" , allowed in C++14

{

 for (int i = 0; i < len; ++i)

 if (search (i))

 return i;

 return -1;

}

 Recursion:One important difference between lambdas and normal functions is that normal functions can
refer to themselves by name. Of course, we can't deduce the return type that way:

auto h() { return h(); } // error, return type of h is unknown

 but once we have deduced a return type, there is no reason to prohibit recursion.

auto sum(int i) {

 if (i == 1)

 return i; // return type deduced to int

 else

 return sum(i-1)+i; // ok to call it now

}

49

IBM Software Group | Rational software

Lambda Closure Summary and Guideline
 Lambda expressions generate closures.

 Calling state can be captured by value or by reference.

 Return types, when specified, use trailing return type syntax.

 Closures can be stored using auto or std::function.

 Be alert for dangling references/pointers in stored closures.

 Short, clear, context‐derived lambdas are best.

 C++14 adds support for auto parameters, generalized captures, and
less restrictive return type deduction

 Enable lambda as:
const initializers
Container comparison
Variadic polymorphic lambdas

50

IBM Software Group | Rational software

BikeShed!

51

IBM Software Group | Rational software

“And if digits should grow wings?”
 Numeric literals of more than a few digits are hard to read.
Pronounce 7237498123.
Compare 237498123 with 237499123 for equality.
Decide whether 237499123 or 20249472 is larger.

 Most common:a comma, base-line dot, and a (thin) space, 7 237 498 123
 None of these work due to ambiguities

 What would you suggest?

52

IBM Software Group | Rational software

Alternatives for growing wings on literals _42_
 Grave accent `: 7`237`498`123

 Single Quote: 7'237'498'123

 Underscore: 7_237_498_123

 Double underscore:
 1_ => 1

1_2 => 12
1__2 => value 1 passed to operator "" _2
0xdead_bee_f => 0xdeadbeef
0xdead_bee__f => value 0xdeadbee passed to operator "" _f

 Scope operator : size_t memsize = 11::B;

 Non-Digit Literal Suffix: 0xdead_beef_db

 Spacing

 Double radix point: ..

 Backslash: \

53

IBM Software Group | Rational software

One solution from April 2013 Bristol C++ Std meeting

 12, 014, or 0XC, 123_456 and 12LL are integer-literals

 1048576, 1_048_576, 0X100000, 0x10_0000

 1.602_176_565e-19 and 1.602176565e-19

 123_km and 123.._km are user-defined-literals
10_10 changes from integer 10 with a suffix of _10 to an integer 1010
original meaning can be restored with 10.._10
0x1234_goo has suffix _goo but the literal 0x1234_foo has suffix oo. The

0x1234.._foo has suffix _foo.

54

IBM Software Group | Rational software

C++14 Language updates

 N3472: Binary literals:
0b10001111

 N3639/N3497: VLA: 1D, no
sizeof

 N3638/N3582: Normal
functions can have their
returns deduced

 N3648/N3610: move capture
in lambdas

 N3652/N3605: relax rules to
allow member init in
aggregate classes

 N3652

struct Univ {

 string name;

 int rank;

 string city = "unknown";

};

void t1()

{

 Univ u = {"Columbia",10};

 cout << u.name << ' ' << u.rank
<< ' ' << u.city << '\n';

}

 55

IBM Software Group | Rational software

C++14 Language

 N3667/core1402: relax rules
to delete implicitly defined
move functions

 N3652/N3597:relax const
expr functions

 N3499: digit separator

 N3664/N3537: batch
new/delete

 N3651/N3615:constexpr
template

 N3649/N3559: polymorphic
lambdas

 N3323: tweak conextual
conv

 N3651
struct matrix_constants {

 template<typename T>

 using pauli = hermitian_matrix<T,
2>;

 template<typename T>

 constexpr pauli<T> sigma1 = { { 0,
1 }, { 1, 0 } };

 template<typename T>

 constexpr pauli<T> sigma2 = { { 0,
-1i }, { 1i, 0 } };

 template<typename T>

 constexpr pauli<T> sigma3 = { { 1,
0 }, { -1, 0 } };

}

 56

IBM Software Group | Rational software

C++14 Library

 N3545: adds constexpr
operator() to integral_constant

 N3644: null forward iterator can
be compared and value init

 N3668/N3511/N3608: allow
exchange on non-atomics

 N3658/N3493: template<int...>
struct index_sequence { };

 N3670/N3584: can address
tuples by types

 N3671/N3601: adding overloads
for std::equal, std::mismatch,
and std::is_permutation to
accept two ranges.

 N3670

tuple<string, string, int> t("foo", "bar",
7);

int i = get<int>(t); // i == 7

int j = get<2>(t); // Equivalent to
the above: j == 7

string s = get<string>(t); //
Compile-time error.
Ambiguous

 N3671

vector<int> v1 = { 1, 4 9 };

vector<int> v2 = { 1, 4, 9, 16, 25, 36,
49 };

vector<int> v3 = { 1, 2, 3, 4 };

assert(!equal(v1.begin(), v1.end(),
v2.begin(), v2.end());

 57

IBM Software Group | Rational software

C++14 Library

 N3656/N3588: adds
make_unique

 N3642/N3531: adds UDL
suffixes for time
(h,min,s,ms,us,ns) and string(s)

 N3660/N3531: adds UDL suffix
for complex imaginary literal

 N3665: synchronize streams

 N3654/N3570:
Boost.Component on embedded
space

 N3654
std::stringstream ss;

std::string original = "foolish me";

std::string round_trip;

ss << original;

ss >> round_trip;

std::cout << original; // outputs: foolish me

std::cout << round_trip; // outputs: foolish

assert(original == round_trip); // assert will fire

std::stringstream ss;

std::string original = "foolish me";

std::string round_trip;

ss << quoted(original);

ss >> quoted(round_trip);

std::cout << original; // outputs: foolish me

std::cout << round_trip; // outputs: foolish me

assert(original == round_trip); // assert will not fire

58

IBM Software Group | Rational software

C++14 Library

 N3645/N3586: adds splice to
maps and sets, extracts to
associative/unordered

 N3657/N3456: adds
heterogeneous comparison
lookups

 N3672/N3527: adds class
template options<T>

 N3669: adds const back to
constexpr for library functions

 N3655/N3546: adds template
aliases to Transformation traits

 N3662/N3532: dynarray <T>
supports zero-sized arrays and
can be looked at with decltype

 N3421: improves <functional>

 N2462: improves result_of in
SFINAE

 N3302: constexpr complex lib

 N3470: constexpr container lib

 N3469: constexpr chrono lib

 N2471: constexpr util lib

 N3672

cin >> s;

optional<int> o = str2int(s); // 'o' may or
may not contain an int

if (o) { // does optional contain a value?

 return *o; // use the value

}

59

IBM Software Group | Rational software

Food for thought and Q/A
 This is the chance to get a copy before you have to pay for it:
C++ : http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2011/n3291.pdf
C++ (last free version): http://www.open-

std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf
C: http://www.open-

std.org/jtc1/sc22/wg14/www/docs/n1570.pdf
 Participate and feedback to Compiler
What features/libraries interest you or your customers?
What problem/annoyance you would like the Std to resolve?
Is Special Math important to you?
Do you expect C++11 features to be used quickly by your

customers?

 Talk to me at my blog:
http://www.ibm.com/software/rational/cafe/blogs/cpp-

standard

60

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3291.pdf�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3291.pdf�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf�
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2011/n3242.pdf�

IBM Software Group | Rational software

61

My blogs and email address
 http://isocpp.org/wiki/faq/wg21:michael-wong

OpenMP CEO: http://openmp.org/wp/about-openmp/
My Blogs: http://ibm.co/pCvPHR
C++11 status: http://tinyurl.com/43y8xgf
Boost test results
 http://www.ibm.com/support/docview.wss?rs=2239&context=SSJT9L&uid=s
wg27006911
C/C++ Compilers Support/Feature Request Page
 http://www.ibm.com/developerworks/rfe/?PROD_ID=700
TM: https://sites.google.com/site/tmforcplusplus/

 Chair of WG21 SG5 Transactional Memory
 IBM and Canada C++ Standard Head of Delegation
 ISOCPP.org Director, Vice President
 Vice Chair of Standards Council of Canada Programming Languages

 Tell us how you use OpenMP:
 http://openmp.org/wp/whos-using-openmp/

IBM Software Group | Rational software

62 IBM

Acknowledgement
 Some slides are borrowed from committee presentations by

various committee members, their proposals, and private
communication

 Thanks to Hubert Tong for his thorough review. All errors still
remain mine.

IBM Software Group | Rational software

References
 My last C++ Std trip report:
https://www.ibm.com/developerworks/community/blogs/5894415f-

be62-4bc0-81c5-
3956e82276f3/entry/the_view_from_c_standard_meeting_april_201
3_part_1?lang=en
Bjarne’s C++0x FAQ:
http://www2.research.att.com/~bs/C++0xFAQ.html

 http://wiki.apache.org/stdcxx/C%2B%2B0xCompilerSupport
Maintained by Martin Sebor, me, and other compiler Tech leads

from other company very rough updates on C++11 compiler status

Slide 63

https://www.ibm.com/developerworks/community/blogs/5894415f-be62-4bc0-81c5-3956e82276f3/entry/the_view_from_c_standard_meeting_april_2013_part_1?lang=en�
https://www.ibm.com/developerworks/community/blogs/5894415f-be62-4bc0-81c5-3956e82276f3/entry/the_view_from_c_standard_meeting_april_2013_part_1?lang=en�
https://www.ibm.com/developerworks/community/blogs/5894415f-be62-4bc0-81c5-3956e82276f3/entry/the_view_from_c_standard_meeting_april_2013_part_1?lang=en�
https://www.ibm.com/developerworks/community/blogs/5894415f-be62-4bc0-81c5-3956e82276f3/entry/the_view_from_c_standard_meeting_april_2013_part_1?lang=en�

IBM Software Group | Rational software

 - Wissen pur

3.-4. Mai in Ohlstadt
C++ ? FRAGEN

IBM Software Group | Rational software

Ich freue mich
auf Ihr Feedback!

Hat Ihnen mein Vortrag
gefallen?

IBM Software Group | Rational software

Veranstalter:

C++

Vielen Dank!
Michael Wong

michaelw@ca.ibm.com

	C++14: Through the Looking Glass�	with apology to Lewis Carroll
	Acknowledgement and Disclaimer
	IBM Rational Disclaimer
	IBM Rational Cafes – Connecting Communities
	IBM Enterprise Modernization Sandbox�Realize the value of your investments in assets, skills and infrastructure within minutes
	Agenda
	C++11 is ratified, but I am missing fingers and toes
	Compute Less!
	Units Programming
	Why don’t we support units?
	C++11 Unit Programming
	C++98/03 SI unit from Bjarne’s GN keynote 2012
	C++11 User defined literals for SI units
	Type-Rich Programming at Compiler Time
	“and literals”
	Rules for Users
	Cooked String literals
	Cooked literals
	Raw literal operators
	Compile-time constants
	UDL idioms and guidelines
	Binary Literal operator template by Daniel Krügler
	Binary Raw Literal
	main()
	�To ””b or not to ””b aka Binary Literals prefix
	C++14 UDL suffixes
	Future UDL suffixes
	�Time and time again
	“Of making lambdas sing”
	Lambda closures
	Lambda closures
	Lambda == Functor (borrowed from Herb Sutter)
	Lambda gotchas with ‘this’
	Lambdas == Functors inside of a class
	Don’t modify a lambda capture of a local variable
	Lambdas == Functors inside of a class with Mutable
	C++11 lambda recap from Scott Meyers cpp-notes
	Other problems with monomorphic C++11 lambdas
	�Generic Lambdas
	Enter the Generic lambda
	“Of move-capture “�How to capture std::unique_ptr “by move” for a lambda in std::for_each�
	C++11 Lambda Capture Workaround from Anthony Williams
	Move capture in C++14 lambdas
	Move Capture Generic lambda
	C++11 Deduce, deduce, deduce
	“And why deduction is so hot”
	All functions can deduce return types
	How to use auto reduction on normal functions
	Deducing with multiple returns and Recursion
	Lambda Closure Summary and Guideline
	BikeShed!
	“And if digits should grow wings?”
	Alternatives for growing wings on literals _42_
	One solution from April 2013 Bristol C++ Std meeting�
	C++14 Language updates
	C++14 Language
	C++14 Library
	C++14 Library
	C++14 Library
	Food for thought and Q/A
	My blogs and email address
	Acknowledgement
	References
	?
	Hat Ihnen mein Vortrag gefallen?
	Vielen Dank!

