
The Care
 & Feeding

of C++’s Dragons

Chandler Carruth
GoingNative 2013

Dragons? C++?

<giant dragon slide>

C++ is hard

History: the legacy of C

History: the legacy of old C++

Subtlety:
“C++ has indeed become too

‘expert friendly’”

Complexity...

The cost of complexity is
exponential.

The application of a systematic, disciplined,
quantifiable approach to the design,
development, operation, and maintenance of
software.

In Reality...

• Factoring the functionality

• Providing layering and boundaries

• Building abstractions

• Defining specifications

Simplicity ≫ Complexity

Build abstractions with simple
interfaces around complex

functionality

Remember:
Clever is not a Compliment!

But that takes time...
and energy...

You need tools to stay
productive!

Automate & Accelerate
the manual tasks

<giant dragon slide>

Clang
LLVM
&

Historically, GCC didn’t cut it...

But this isn’t fair at all...

GCC is improving faster than ever,
Clang has improved directly as a result

Still, LLVM remains our preferred
platform for C++ tools...

LLVM: An OSS project

LLVM: Compiler Infrastructure

Clang: Production C++11 Compiler

LLD: An LLVM Linker

LLDB: An LLVM Debugger

LLVM: A Complete C++ Toolchain

The first tool...

Clang/LLVM is a production quality
C++11 compiler...

...and is rapidly implementing
the draft C++14!

Generates high-quality code,
and does so reasonably quickly

Diagnoses broken
code really well

(See last year’s talk!)

Lots of important warnings...

But let’s talk about tools!

Authorship and Modification

Making code
look the way
you want it

or

Refactoring!

We set out to build Fowler’s
catalog of refactoring tools...

But none of them worked

void foo(...) {
 for (...) {
 if (...) {
 if (...)
{
 Widget magic_widget{...};
 magic_widget.build(really, long, argument, list, barely, fits);
 bar(magic_widget,
 some_other_param,
 another_param);
}
 else
 bar(...);

Lines of code

T
im

e
to

 c
ha

ng
e

Refactoring

Reformatting

Lines of code

T
im

e
to

 c
ha

ng
e

Refactoring

Reformatting

OUT OF TIME!!!

What is the most important tool
to reduce wasted time?

Formatting Whitespace

Yea, this stuff...

Because your code is a unique and
beautiful snowflake

WAIT HOW DARE YOU
FORMAT IT THAT WAY!

moments later in code review...

BECAUSE THAT IS THE
ONE TRUE FORMATTING!

Remember:
Our challenge is complexity

One way we deal with it is
through patterns

Well formatted code forms a
pattern that simplifies it

Unfortunately, indenting is easy,
but formatting C++ is hard!

Where do you break a line?

Enough slides, let’s have a demo!

YAY LIVE DEMO!!!

Another tool to save you time...

clang-modernize: let’s try it!

YAY MORE DEMO!!!

And now for something
completely different...

Tools for debugging and
protecting your code

DO NOT WANT!!!

We use both static and dynamic
analysis tools

80% of bugs caught statically
Very low (non-zero) false positives

20% of bugs caught dynamically
Zero false positives!

3 components of static analysis

The first are compiler warnings
(we’ve been over these...)

An interesting aspect to these are
model checking warnings

The second component is the
offline static analyzer

<demo static analyzer>

The final component is offline
inference tooling to automate

annotating your code

(coming soon...)

Static analysis for C++ is still really
new in Clang, lots left to do

But what about those really bad
bugs we miss statically?

THESE BUGS, REMEMBER?

Dynamic analysis:
Valgrind? PIN? Others?

They haven’t caught on...

... maybe because they’re too slow

... and they miss too many bugs

... and they don’t really help you fix

LLVM Sanitizers:
Compiler instrumentation

dynamic analysis

The number of sanitizers is three:

1) Address Sanitizer
2) Thread Sanitizer
3) Memory Sanitizer

These are based on shadow
memory, can’t be combined

The number of sanitizers is fourthree:

1) Address Sanitizer
2) Thread Sanitizer
3) Memory Sanitizer
4) Undefined Behavior Sanitizer

Don’t forget: dynamic analysis only
works if you test your code!

Let’s walk through some bugs...

OMG MORE DEMO!!!

to sum up...

Complexity is the biggest
challenge for C++ today

Tools can help

Automate the manual tasks
Accelerate the complex tasks

Find bugs faster -- 80% offline

Use dynamic analysis for the long
tail of subtle, complex bugs

Combine it with thorough testing
to protect your software

These tools help make writing
correct & reliable C++ fun & easy

Now get back to writing code
and engineering software!

Thanks to all the LLVM hackers!
(there are too many to list!)

Oh, and one more thing...

http://llvm.org/builds/

http://llvm.org/builds/
http://llvm.org/builds/

