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An Effective C++11/14 Sampler

® Target readership:
» Good knowledge of C++98.
» Basic knowledge of C++11.
» No knowledge of C++14.

® Projected completion 2Q) 2014.

Effective C++11/14

® All new material vis-a-vis my other books.

® Usual guideline-based schtick.
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An Effective C++11/14 Sampler

Understand std: :move and std: : forward
What they don’t do:

® std::move doesn’t move.
® std::forward doesn’t forward.
® Neither generates code.
They're simply casts:
® std: :move unconditionally casts to an rvalue.

® std::forward conditionally casts to an rvalue.
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std: :move

Essentially-conforming implementation:

template<typename T>
typename remove_reference<T>::type&&

// in namespace std

move (T&& param)

{

}

Clearly just a cast.

® Think of it as rvalue_cast.

using ReturnType = typename remove reference<T>::type&&;

return static_cast<ReturnType>(param);
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std: :move

Aside: C++14 enables two implementation simplifications:
template<typename T> // deduce
decltype(auto) move(T&& param) // return type

using ReturnType = remove_reference t<T»>&&; // reduce noise

return static_cast<ReturnType>(param);

}

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 6

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/



An Effective C++11/14 Sampler

std: :move

Consider:
struct SomeDataStructure {
std::string name;

};M

SomeDataStructure sds;

void processAndAdd(const std::string s) // "Want speed? Pass
{ // by value", "Pass
// sink args by value"

// read-only ops on s

sds.name = std::move(s); // "move" s into sds

}

Compiles, runs, probably passes unit tests.

®" Move a const std: :string?
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std: :move

Two std: : string assignment operators:

class string { // really
public: // basic_string<char..>

étr‘ing& operator=(const string& rhs); // copy assignment

string& operator=(string&& rhs); // move assignment
¥
Ergo:
void processAndAdd(const std::string s)
{
sds.name = std::move(s); // copies s!
}

Essentially same as why “moves” on legacy types copy (but compile!).
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std: :move

Lessons:
® Don't declare objects const if you want to move from them.

® Using std: :move doesn't guarantee anything will be moved.
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std: : forward

Consider:
void process(Widget& lvalParam); // process lvalues
void process(Widget&& rvalParam); // process rvalues

template<typename T>
void logAndProcess(T&& param)

makelLogEntry("Calling 'process'",
std::chrono::system_clock::now());
process(std::forward<T>(param));

¥

Widget w;

logAndProcess(w); // call with lvalue
logAndProcess(std: :move(w)); // call with rvalue

® param is an lvalue.

® std::forward casts param to rvalue iff rvalue was passed in.
» A conditional cast.
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std: : forward

In std: : forward, T encodes lvalueness/rvalueness.

Conceptual std: : forward implementation:

template<typename T> // in namespace std
T&& forward(T&& param)

if (is_lvalue_reference<T>::value) { // if T indicates lvalue

return param; // do nothing
} else { // else
return move(param); // cast to rvalue

}
}

Simply a conditional cast.
Declared return type misleading;:
® For lvalues, returns T&.

Real implementations more sophisticated, faster, will compile.

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 11
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/



An Effective C++11/14 Sampler

Guideline

Understand std: :move and std: : forward.
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Declare Functions noexcept Whenever Possible

noexcept the new throw():
void someFunc() noexcept; // C++11
void someFunc() throw(); // C++98 and C++11 (deprecated)

Semantics similar, but not identical.
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Violated Exception Specifications
When exception thrown:
void someFunc() throw() { /* code that throws */ }
1. Unwind stack to someFunc’s caller.

2. Call std: :unexpected (or its replacement).
® Typically calls std: :terminate (or its replacement).

void someFunc() noexcept { /* code that throws */ }
" Maybe unwind stack.

1. Call std: :terminate (or its replacement).
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For a violated noexcept, whether (and, if so, how far) the stack is unwound is
implementation-defined.
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Stack Unwinding and Optimization

Not unwinding stack permits more optimizations:
void someFunc() noexcept; // more optimization opportunities

void someFunc() throw(); // fewer optimization opportunities
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Stack Unwinding and Optimization

Analysis not limited to noexcept vs. throw():
void someFunc() noexcept; // more optimization options
void someFunc() throw(); // fewer optimization options

void someFunc(); // fewer optimization options

When noexcept applies, use it.

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 16
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/



An Effective C++11/14 Sampler

Move Functions

Especially important for move functions:
® Move constructor, move assignment operator
Some code may replace copying only with non-throwing mouves.

® Functions with strong exception-safety guarantee.
» E.g., many std: :vector functions:
* reserve
*resize

+ push_back
*
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Exception Safety of std: :vector: :push_back

If exception thrown migrating elements from old to new storage:

® Copying: original storage unchanged. =~ LELTTTTTTTI
» Strong guarantee.

" Moving;: original storage modified. (LT T TS
» Basic guarantee. E - EEEEEEEEE

For strong guarantee, only non-throwing move acceptable.
® std::vector::push_back uses std: :move_if_noexcept.
» “Cast to rvalue only if T's move known to not throw.”
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Copy vs. Move vs. Nonthrowing Move

Consider:
const std::string stringvValue("This string has 29 characters");

class Widget {
private:
std::string s;

public:
Widget(): s(stringValue) {}
" // copy & move functions
s
std: :vector<Widget> vw;
Widget w;
for (std::size_t i =©; i < n; ++i) { // append n copies
vw.push_back(w); // of w to vw
¥
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Performance of n push_backs
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All data gathered August 2013 on a Lenovo W510 laptop.

Likely reason that performance numbers for gcc are much better than for MSVC is that gcc
uses reference-counting, which is not conforming under C++11.
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std: :move_if noexcept

Definition:

template <class T>

typename conditional<!is nothrow move constructible<T>::value
&& is_copy constructible<T>::value,
const T&,
T&&
>::type

move_if noexcept(T& x) noexcept;

Returns: std::move(x)
Translation:

B Cast to rvalue if:
= T's move constructor doesn’t throw or
» T’s not copy constructible

® Otherwise do nothing.
» Return param as lvalue.
+ Only lvalues can be passed in.
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Definition is from §20.2.3 of the C++11 Standard.
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std: :move_if noexcept
For move-only types (e.g., std: :unique_ptr, std: :thread):
® Cast unconditionally performed if copy construction not available.

std::move_if_noexcept Z “Move only if T's move known to not throw.” :-)
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std::is_nothrow_move_constructible

How get this to be true?

® Tell your compiler :-)
» Declare function noexcept.
» Or throw()
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VC12 (part of VS2013) generates correct values for
std::is_nothrow_move_constructibl<T> if T’s move constructor has a “throw()”
specification.
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Declare Functions noexcept Whenever Possible

noexcept part of a function’s interface.
® Clients may depend on it, e.g., for exception-safety guarantees.
® Changing it may break client code.

® Don’t use noexcept just because current implementation permits it.
» Implementation may change.
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Declare Functions noexcept Whenever Possible
Most code is exception-neutral.
® Exceptions may freely flow through them.
® Such code eschews exception specifications.
void commonFunction( parameters ); // no exception spec
Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
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Move Functions Revisited

Not all move functions are noexcept.

® E.g., none of the standard containers.
template <class T, class Allocator = allocator<T> > // from

class list { // C++11
public:
list(list&& x); // no
1list<T,Allocator>& // ex
operator=(1ist<T,Allocator>&& x); // specs.
s

» In general, moving containers may require memory allocation.

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
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The move functions in std: : string are declared noexcept, but (1) technically,
std::string is not a container, and (2) Howard Hinnant has opined that this may be a
defect in the standard.

Moving containers may require memory allocation, because empty containers may contain
dynamically allocated memory. For example, std: :1ist implementations may have a
sentinel node present, even if there are no elements in the list. When move-constructing a
std: :1ist, a new sentinel node must be allocated, either for the new object or to make up
for the sentinel node that was moved from the old object. Other containers may desire
dynamically allocated memory for other reasons.
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Move Functions Revisited

When noexcept correct for a class’s move functions,
® Declare them noexcept.

® If copy functions not noexcept, encourage clients to review calls.

» Some could-throw copies may become can’t-throw moves.
¢ Exception-safety guarantees maybe strengthenable.
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Conditionally noexcept Functions

noexcept actually takes a compile-time boolean expression:

void f() noexcept; // shorthand for below
void f() noexcept(true); // same meaning as above
void f(); // shorthand for below

void f() noexcept(false); // same meaning as above

® noexcept(false) = function not guaranteed not to throw.
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Conditionally noexcept Functions

noexcept also an operator.
® Returns whether an expression guaranteed not to throw.
® Evaluated during compilation.

® Enables conditionally noexcept functions:

template<typename T>
void f(T&& param) noexcept(noexcept(*param)); // f noexcept
// iff *param is
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Conditionally noexcept Functions

Common for swap in standard library. Examples:

template <class T, size t N>

void swap(T (&a)[N], T (&b)[N]) noexcept(noexcept(swap(*a, *b)));
template <class T1, class T2>

struct pair {

void swap(pair& p) noexcept(noexcept(swap(first, p.first)) &&
noexcept(swap(second, p.second)));

=

template <class T, class Container>
void swap(queue<T, Container>& x, queue<T, Container>& y)
noexcept(noexcept(x.swap(y)));

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
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All code on this slide copied out of the C++11 spec.
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swap and noexcept

® Whether swap noexcept often depends on other swaps.

® Whether swap callers noexcept dependent on whether swap is.

® Optimization of swap and callers dependent on noexcept status.

® swap frequently used (e.g., in algorithms, copy assignment, etc.).
Implication:

® Declare swap noexcept whenever possible.
» Noteworthy case of the general rule.
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Guideline

Declare functions noexcept whenever possible.
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Make std: : threads Unjoinable on All Paths

A std: :thread object may be joinable:

® Represent an underlying (i.e., OS) thread of execution (TOE).
Unjoinable std: : threads represent no underlying TOE.

® Default-constructed std: : threads.

® std::threads that have been detached or moved from.

® std: :threads whose TOE has been joined.

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
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TOE is my abbreviation. It’s not present in the standard.

The standard uses the term joinable, but not unjoinable.
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Destroying Joinable Threads = Termination

std: :thread dtor calls std: : terminate if it's joinable:

{
std::thread t(funcToRun); // t is joinable
// assume t remains joinable
} // std::terminate called

® Different from Boost.Threads before Boost 1.50.
» There, t.detach is called.
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Implication of C++11/14 Behavior

Local std: :threads must become unjoinable on all paths from block:

® Become unjoinable:
» Be joined or
» Be detached or
» Be otherwise made unjoinable (e.g., moved from)

= All paths:
» continue, break, goto, return
» Flow off end

» Exception
Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
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Unjoinable on All Paths

All paths = RAII classes.

® None for std: : thread in standard library!
» From the Standard:
Either implicitly detaching or joining a joinable() thread in its
destructor could result in difficult to debug correctness (for detach)

or performance (for join) bugs encountered only when an exception
is raised.

® Easy to write your own.
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Quote is from § 30.3.1.3.
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RAII Class for std: : thread

class ThreadRAII {
public:
typedef void (std::thread::*RAIIAction)(); // dtor action

ThreadRAII(std::thread&& thread, RAIIAction a)
: t(std::move(thread)), action(a) {}

~ThreadRAII()

{ if (t.joinable()) (t.*action)(); }

std: :thread& get() { return t; }
private:

RAIIAction action;
std::thread t;

s
ThreadRAII t1(std::thread(doThisWork), // join on
&std: :thread::join); // destruction
ThreadRAII t2(std::thread(doThatWork), // detach on
&std: :thread: :detach); // destruction
Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
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The joinable() test in the destructor is necessary, because both join and detach have
joinable() as a precondition. Client code could set up a ThreadRAII object to do a
detach on destruction, then use get to perform a premature join. In that case, the test in
the destructor for joinable() is needed to avoid having an exception thrown.

No race can arise due to testing t.joinable and then later calling t.*action, because
std: :thread objects can’t asynchronously become unjoinable; only calls to std: :thread
member functions can change an object's joinable status. If another thread is executing a
std: :thread member function while this thread is executing the destructor, that's a race
that leads to UB.
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Alternative Approach

Consider std: :async instead of explicit std: : threads.
® No exception-on-destruction issue.

® Different quirky behavior:
» Dtor of last future referring to std: :async-derived shared state blocks
until asynchronously running thread completes.
* May be modified in C++14...
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Guideline

Make std: :threads unjoinable on all paths.
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Summary

® Understand std: :move and std: : forward.
® Declare functions noexcept whenever possible.

® Make std: :threads unjoinable on all paths.
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Further Information
C++11:

® Programming Languages — C++, Document 14882:2011, ISO/IEC,
2011-09-01.

» ISO product page: http://tinyurl.com/5s0e87 (CHEF238 = ~$245).
» ANSI product page: http://tinyurl.com/8m6évbSm ($30).

» First post-Standard draft (N3337): http://tinyurl.com/6wkboer (free).
* Essentially identical to the standard.

® C++11, Wikipedia.
® Querview of the New C++ (C++11/14), Scott Meyers,

http://www.artima.com/shop/overview_of_the_new_cpp.
» Annotated training materials (analogous to these).

® The C++ Standard Library, Second Edition,
Nicolai M. Josuttis, Addison-Wesley, 2012.
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Further Information

C++14:

® Programming Languages — C++, Document N3690, ISO/IEC,
2013-05-15.

» Committee Draft (CD).

® “The view from C++ Standard meeting April 2013,” Michael Wong,
C/C++ Cafe (blog) :
» PPart 1, 25 April 2013. Discusses core language.
» Part 2, 26 April 2013. Discusses standard library.
» PPart 3, 29 April 2013. Discusses concurrency and TSes.

® Querview of the New C++ (C++11/14), Scott Meyers,
http://www.artima.com/shop/overview_of_the_new_cpp.
» Annotated training materials (analogous to these).
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Further Information

std: :move and std: : forward:

® “On the Superfluousness of std: :move,” Scott Meyers, The View from
Aristeia (blog), 11 November 2012.
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Further Information

noexcept:

® “Exception Specifications in C++ 2011,” Dietmar Kiihl, Overload, June
2011.

® “Using noexcept,” Andrzej Krzemienski, Andrzej’s C++ blog, 10 June
2011.

® “How on earth did noexcept get through the standards process?,”
Usenet newsgroup comp.lang.c++.moderated, discussion initiated 14
March 2011.

» Bottom of thread discusses noexcept and optimization.

® “Summary of C++0x Feature Availability,” Usenet newsgroup
comp.std.c++, discussion initiated 7 March 2010.
» Includes discussion of noexcept and optimization.
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Further Information

Cost of move operations:

® “std::string, SSO, and Move Semantics,” Scott Meyers, The View from
Avisteia, 10 April 2012.

® “Small String Optimization and Move Operations,” John Ahlgren,
John Ahlgren, 30 March 2012.
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Further Information

The Concurrency API:

® The C++ Standard Library, Second Edition,
Nicolai M. Josuttis, Addison-Wesley, 2012.

® C++ Concurrency in Action, Anthony Williams,
Manning, 2012.

® “(Not) using std::thread,” Andrzej Krzemienski, Andrzej’s C++ blog,
14 November 2012.

® “N2802: A plea to reconsider detach-on-destruction for thread
objects,” Hans-]. Boehm, 4 December 2008.

® “std::futures from std::async aren't special!,” Scott Meyers, The View
from Aristeia, 20 March 2013.

® “async and ~future,” Herb Sutter, C++ Standardization Committee
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Licensing Information

Scott Meyers licenses materials for this and other training courses for
commercial or personal use. Details:

® Commercial use: http://aristeia.com/Licensing/licensing.html
® Personal use: http://aristeia.com/Licensing/personalUse.html
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