An Effective C++11/14 Sampler

An

Effective
Cr+11/14
Sampler

Scott Meyers,
Ph.D.

Last Revised: 9/5/13

Image:
http://upload.wikimedia.org/wikipedia/commons/b/bl/Sampler_by_Elizabeth_Laidman9%
2C_1760.jpg. Wikipedia caption: “Cross-stitch alphabet sampler worked by Elizabeth

Laidman, 1760.”

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

An Effective C++11/14 Sampler

® Target readership:
» Good knowledge of C++98.
» Basic knowledge of C++11.
» No knowledge of C++14.

® Projected completion 2Q) 2014.

Effective C++11/14

® All new material vis-a-vis my other books.

® Usual guideline-based schtick.

Scott Meyers, Software Development Consultant
http://aristeia.com/

© 2013 Scott Meyers, all rights reserved.

Slide 2

Scott Meyers, Software Development Consultant
http://aristeia.com/

© 2013 Scott Meyers, all rights reserved.

An Effective C++11/14 Sampler

Understand std: :move and std: : forward
What they don’t do:

® std::move doesn’t move.
® std::forward doesn’t forward.
® Neither generates code.
They're simply casts:
® std: :move unconditionally casts to an rvalue.

® std::forward conditionally casts to an rvalue.

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 4
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/

An Effective C++11/14 Sampler

std: :move

Essentially-conforming implementation:

template<typename T>
typename remove_reference<T>::type&&

// in namespace std

move (T&& param)

{

}

Clearly just a cast.

® Think of it as rvalue_cast.

using ReturnType = typename remove reference<T>::type&&;

return static_cast<ReturnType>(param);

Scott Mevyers, Software Development Consultant
http://aristeia.com/

© 2013 Scott Mevers, all rights reserved.

Slide 5

Scott Meyers, Software Development Consultant
http://aristeia.com/

© 2013 Scott Meyers, all rights reserved.

An Effective C++11/14 Sampler

std: :move

Aside: C++14 enables two implementation simplifications:
template<typename T> // deduce
decltype(auto) move(T&& param) // return type

using ReturnType = remove_reference t<T»>&&; // reduce noise

return static_cast<ReturnType>(param);

}

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 6

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/

An Effective C++11/14 Sampler

std: :move

Consider:
struct SomeDataStructure {
std::string name;

};M

SomeDataStructure sds;

void processAndAdd(const std::string s) // "Want speed? Pass
{ // by value", "Pass
// sink args by value"

// read-only ops on s

sds.name = std::move(s); // "move" s into sds

}

Compiles, runs, probably passes unit tests.

®" Move a const std: :string?

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 7
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/

An Effective C++11/14 Sampler

std: :move

Two std: : string assignment operators:

class string { // really
public: // basic_string<char..>

étr‘ing& operator=(const string& rhs); // copy assignment

string& operator=(string&& rhs); // move assignment
¥
Ergo:
void processAndAdd(const std::string s)
{
sds.name = std::move(s); // copies s!
}

Essentially same as why “moves” on legacy types copy (but compile!).

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 8
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/

An Effective C++11/14 Sampler

std: :move

Lessons:
® Don't declare objects const if you want to move from them.

® Using std: :move doesn't guarantee anything will be moved.

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 9
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/

An Effective C++11/14 Sampler

std: : forward

Consider:
void process(Widget& lvalParam); // process lvalues
void process(Widget&& rvalParam); // process rvalues

template<typename T>
void logAndProcess(T&& param)

makelLogEntry("Calling 'process'",
std::chrono::system_clock::now());
process(std::forward<T>(param));

¥

Widget w;

logAndProcess(w); // call with lvalue
logAndProcess(std: :move(w)); // call with rvalue

® param is an lvalue.

® std::forward casts param to rvalue iff rvalue was passed in.
» A conditional cast.

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 10
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/

An Effective C++11/14 Sampler

std: : forward

In std: : forward, T encodes lvalueness/rvalueness.

Conceptual std: : forward implementation:

template<typename T> // in namespace std
T&& forward(T&& param)

if (is_lvalue_reference<T>::value) { // if T indicates lvalue

return param; // do nothing
} else { // else
return move(param); // cast to rvalue

}
}

Simply a conditional cast.
Declared return type misleading;:
® For lvalues, returns T&.

Real implementations more sophisticated, faster, will compile.

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 11
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/

An Effective C++11/14 Sampler

Guideline

Understand std: :move and std: : forward.

Scott Mevyers, Software Development Consultant
http://aristeia.com/

© 2013 Scott Mevers, all rights reserved.

Slide 12

Scott Meyers, Software Development Consultant

http://aristeia.com/

© 2013 Scott Meyers, all rights reserved.

An Effective C++11/14 Sampler

Declare Functions noexcept Whenever Possible

noexcept the new throw():
void someFunc() noexcept; // C++11
void someFunc() throw(); // C++98 and C++11 (deprecated)

Semantics similar, but not identical.

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 13
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/

An Effective C++11/14 Sampler

Violated Exception Specifications
When exception thrown:
void someFunc() throw() { /* code that throws */ }
1. Unwind stack to someFunc’s caller.

2. Call std: :unexpected (or its replacement).
® Typically calls std: :terminate (or its replacement).

void someFunc() noexcept { /* code that throws */ }
" Maybe unwind stack.

1. Call std: :terminate (or its replacement).

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 14

For a violated noexcept, whether (and, if so, how far) the stack is unwound is
implementation-defined.

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

An Effective C++11/14 Sampler

Stack Unwinding and Optimization

Not unwinding stack permits more optimizations:
void someFunc() noexcept; // more optimization opportunities

void someFunc() throw(); // fewer optimization opportunities

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 15
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/

An Effective C++11/14 Sampler

Stack Unwinding and Optimization

Analysis not limited to noexcept vs. throw():
void someFunc() noexcept; // more optimization options
void someFunc() throw(); // fewer optimization options

void someFunc(); // fewer optimization options

When noexcept applies, use it.

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 16
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/

An Effective C++11/14 Sampler

Move Functions

Especially important for move functions:
® Move constructor, move assignment operator
Some code may replace copying only with non-throwing mouves.

® Functions with strong exception-safety guarantee.
» E.g., many std: :vector functions:
* reserve
*resize

+ push_back
*

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 17

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

An Effective C++11/14 Sampler

Exception Safety of std: :vector: :push_back

If exception thrown migrating elements from old to new storage:

® Copying: original storage unchanged. =~ LELTTTTTTTI
» Strong guarantee.

" Moving;: original storage modified. (LT T TS
» Basic guarantee. E - EEEEEEEEE

For strong guarantee, only non-throwing move acceptable.
® std::vector::push_back uses std: :move_if_noexcept.
» “Cast to rvalue only if T's move known to not throw.”

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 18
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/

An Effective C++11/14 Sampler

Copy vs. Move vs. Nonthrowing Move

Consider:
const std::string stringvValue("This string has 29 characters");

class Widget {
private:
std::string s;

public:
Widget(): s(stringValue) {}
" // copy & move functions
s
std: :vector<Widget> vw;
Widget w;
for (std::size_t i =©; i < n; ++i) { // append n copies
vw.push_back(w); // of w to vw
¥
Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 19
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/

An Effective C++11/14 Sampler

Performance of n push_backs

10,000 Elements in vector

Move w/noexcept _
Move wionoexcest N
cory |

Move w/throw() I

geca.81

vCci12

Move w/o throw() |

s |

10.000000 2.000000 4.000000 6.000000 8.000000 10.000000 12.000000 14.000000
Time (ms)

1,000 Elements in vector

100 Elements in vector

Scott Mevyers, Software Development Consultant

© 2013 Scott Mevers, all rights reserved.
http://aristeia.com/

Slide 20

All data gathered August 2013 on a Lenovo W510 laptop.

Likely reason that performance numbers for gcc are much better than for MSVC is that gcc
uses reference-counting, which is not conforming under C++11.

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

An Effective C++11/14 Sampler

std: :move_if noexcept

Definition:

template <class T>

typename conditional<!is nothrow move constructible<T>::value
&& is_copy constructible<T>::value,
const T&,
T&&
>::type

move_if noexcept(T& x) noexcept;

Returns: std::move(x)
Translation:

B Cast to rvalue if:
= T's move constructor doesn’t throw or
» T’s not copy constructible

® Otherwise do nothing.
» Return param as lvalue.
+ Only lvalues can be passed in.

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 21

Definition is from §20.2.3 of the C++11 Standard.

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

An Effective C++11/14 Sampler

std: :move_if noexcept
For move-only types (e.g., std: :unique_ptr, std: :thread):
® Cast unconditionally performed if copy construction not available.

std::move_if_noexcept Z “Move only if T's move known to not throw.” :-)

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 22
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/

An Effective C++11/14 Sampler

std::is_nothrow_move_constructible

How get this to be true?

® Tell your compiler :-)
» Declare function noexcept.
» Or throw()

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 23

VC12 (part of VS2013) generates correct values for
std::is_nothrow_move_constructibl<T> if T’s move constructor has a “throw()”
specification.

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

An Effective C++11/14 Sampler

Declare Functions noexcept Whenever Possible

noexcept part of a function’s interface.
® Clients may depend on it, e.g., for exception-safety guarantees.
® Changing it may break client code.

® Don’t use noexcept just because current implementation permits it.
» Implementation may change.

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 24
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/

An Effective C++11/14 Sampler

Declare Functions noexcept Whenever Possible
Most code is exception-neutral.
® Exceptions may freely flow through them.
® Such code eschews exception specifications.
void commonFunction(parameters); // no exception spec
Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 25
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/

An Effective C++11/14 Sampler

Move Functions Revisited

Not all move functions are noexcept.

® E.g., none of the standard containers.
template <class T, class Allocator = allocator<T> > // from

class list { // C++11
public:
list(list&& x); // no
1list<T,Allocator>& // ex
operator=(1ist<T,Allocator>&& x); // specs.
s

» In general, moving containers may require memory allocation.

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 26

The move functions in std: : string are declared noexcept, but (1) technically,
std::string is not a container, and (2) Howard Hinnant has opined that this may be a
defect in the standard.

Moving containers may require memory allocation, because empty containers may contain
dynamically allocated memory. For example, std: :1ist implementations may have a
sentinel node present, even if there are no elements in the list. When move-constructing a
std: :1ist, a new sentinel node must be allocated, either for the new object or to make up
for the sentinel node that was moved from the old object. Other containers may desire
dynamically allocated memory for other reasons.

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

An Effective C++11/14 Sampler

Move Functions Revisited

When noexcept correct for a class’s move functions,
® Declare them noexcept.

® If copy functions not noexcept, encourage clients to review calls.

» Some could-throw copies may become can’t-throw moves.
¢ Exception-safety guarantees maybe strengthenable.

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 27
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/

An Effective C++11/14 Sampler

Conditionally noexcept Functions

noexcept actually takes a compile-time boolean expression:

void f() noexcept; // shorthand for below
void f() noexcept(true); // same meaning as above
void f(); // shorthand for below

void f() noexcept(false); // same meaning as above

® noexcept(false) = function not guaranteed not to throw.

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 28
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/

An Effective C++11/14 Sampler

Conditionally noexcept Functions

noexcept also an operator.
® Returns whether an expression guaranteed not to throw.
® Evaluated during compilation.

® Enables conditionally noexcept functions:

template<typename T>
void f(T&& param) noexcept(noexcept(*param)); // f noexcept
// iff *param is

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 29
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/

An Effective C++11/14 Sampler

Conditionally noexcept Functions

Common for swap in standard library. Examples:

template <class T, size t N>

void swap(T (&a)[N], T (&b)[N]) noexcept(noexcept(swap(*a, *b)));
template <class T1, class T2>

struct pair {

void swap(pair& p) noexcept(noexcept(swap(first, p.first)) &&
noexcept(swap(second, p.second)));

=

template <class T, class Container>
void swap(queue<T, Container>& x, queue<T, Container>& y)
noexcept(noexcept(x.swap(y)));

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 30

All code on this slide copied out of the C++11 spec.

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

An Effective C++11/14 Sampler

swap and noexcept

® Whether swap noexcept often depends on other swaps.

® Whether swap callers noexcept dependent on whether swap is.

® Optimization of swap and callers dependent on noexcept status.

® swap frequently used (e.g., in algorithms, copy assignment, etc.).
Implication:

® Declare swap noexcept whenever possible.
» Noteworthy case of the general rule.

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 31
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/

An Effective C++11/14 Sampler

Guideline

Declare functions noexcept whenever possible.

Scott Mevyers, Software Development Consultant
http://aristeia.com/

© 2013 Scott Mevers, all rights reserved.

Slide 32

Scott Meyers, Software Development Consultant

http://aristeia.com/

© 2013 Scott Meyers, all rights reserved.

An Effective C++11/14 Sampler

Make std: : threads Unjoinable on All Paths

A std: :thread object may be joinable:

® Represent an underlying (i.e., OS) thread of execution (TOE).
Unjoinable std: : threads represent no underlying TOE.

® Default-constructed std: : threads.

® std::threads that have been detached or moved from.

® std: :threads whose TOE has been joined.

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 33

TOE is my abbreviation. It’s not present in the standard.

The standard uses the term joinable, but not unjoinable.

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

An Effective C++11/14 Sampler

Destroying Joinable Threads = Termination

std: :thread dtor calls std: : terminate if it's joinable:

{
std::thread t(funcToRun); // t is joinable
// assume t remains joinable
} // std::terminate called

® Different from Boost.Threads before Boost 1.50.
» There, t.detach is called.

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 34
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/

An Effective C++11/14 Sampler

Implication of C++11/14 Behavior

Local std: :threads must become unjoinable on all paths from block:

® Become unjoinable:
» Be joined or
» Be detached or
» Be otherwise made unjoinable (e.g., moved from)

= All paths:
» continue, break, goto, return
» Flow off end

» Exception
Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 37
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/

An Effective C++11/14 Sampler

Unjoinable on All Paths

All paths = RAII classes.

® None for std: : thread in standard library!
» From the Standard:
Either implicitly detaching or joining a joinable() thread in its
destructor could result in difficult to debug correctness (for detach)

or performance (for join) bugs encountered only when an exception
is raised.

® Easy to write your own.

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 38

Quote is from § 30.3.1.3.

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

An Effective C++11/14 Sampler

RAII Class for std: : thread

class ThreadRAII {
public:
typedef void (std::thread::*RAIIAction)(); // dtor action

ThreadRAII(std::thread&& thread, RAIIAction a)
: t(std::move(thread)), action(a) {}

~ThreadRAII()

{ if (t.joinable()) (t.*action)(); }

std: :thread& get() { return t; }
private:

RAIIAction action;
std::thread t;

s
ThreadRAII t1(std::thread(doThisWork), // join on
&std: :thread::join); // destruction
ThreadRAII t2(std::thread(doThatWork), // detach on
&std: :thread: :detach); // destruction
Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 39

The joinable() test in the destructor is necessary, because both join and detach have
joinable() as a precondition. Client code could set up a ThreadRAII object to do a
detach on destruction, then use get to perform a premature join. In that case, the test in
the destructor for joinable() is needed to avoid having an exception thrown.

No race can arise due to testing t.joinable and then later calling t.*action, because
std: :thread objects can’t asynchronously become unjoinable; only calls to std: :thread
member functions can change an object's joinable status. If another thread is executing a
std: :thread member function while this thread is executing the destructor, that's a race
that leads to UB.

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

An Effective C++11/14 Sampler

Alternative Approach

Consider std: :async instead of explicit std: : threads.
® No exception-on-destruction issue.

® Different quirky behavior:
» Dtor of last future referring to std: :async-derived shared state blocks
until asynchronously running thread completes.
* May be modified in C++14...

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 40
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/

An Effective C++11/14 Sampler

Guideline

Make std: :threads unjoinable on all paths.

Scott Mevyers, Software Development Consultant
http://aristeia.com/

© 2013 Scott Mevers, all rights reserved.

Slide 41

Scott Meyers, Software Development Consultant

http://aristeia.com/

© 2013 Scott Meyers, all rights reserved.

An Effective C++11/14 Sampler

Summary

® Understand std: :move and std: : forward.
® Declare functions noexcept whenever possible.

® Make std: :threads unjoinable on all paths.

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 42
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/

An Effective C++11/14 Sampler

Further Information
C++11:

® Programming Languages — C++, Document 14882:2011, ISO/IEC,
2011-09-01.

» ISO product page: http://tinyurl.com/5s0e87 (CHEF238 = ~$245).
» ANSI product page: http://tinyurl.com/8m6évbSm ($30).

» First post-Standard draft (N3337): http://tinyurl.com/6wkboer (free).
* Essentially identical to the standard.

® C++11, Wikipedia.
® Querview of the New C++ (C++11/14), Scott Meyers,

http://www.artima.com/shop/overview_of_the_new_cpp.
» Annotated training materials (analogous to these).

® The C++ Standard Library, Second Edition,
Nicolai M. Josuttis, Addison-Wesley, 2012.

Scott Mevyers, Software Development Consultant

© 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 43
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/

An Effective C++11/14 Sampler

Further Information

C++14:

® Programming Languages — C++, Document N3690, ISO/IEC,
2013-05-15.

» Committee Draft (CD).

® “The view from C++ Standard meeting April 2013,” Michael Wong,
C/C++ Cafe (blog) :
» PPart 1, 25 April 2013. Discusses core language.
» Part 2, 26 April 2013. Discusses standard library.
» PPart 3, 29 April 2013. Discusses concurrency and TSes.

® Querview of the New C++ (C++11/14), Scott Meyers,
http://www.artima.com/shop/overview_of_the_new_cpp.
» Annotated training materials (analogous to these).

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 44
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/

An Effective C++11/14 Sampler

Further Information

std: :move and std: : forward:

® “On the Superfluousness of std: :move,” Scott Meyers, The View from
Aristeia (blog), 11 November 2012.

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 45
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/

An Effective C++11/14 Sampler

Further Information

noexcept:

® “Exception Specifications in C++ 2011,” Dietmar Kiihl, Overload, June
2011.

® “Using noexcept,” Andrzej Krzemienski, Andrzej’s C++ blog, 10 June
2011.

® “How on earth did noexcept get through the standards process?,”
Usenet newsgroup comp.lang.c++.moderated, discussion initiated 14
March 2011.

» Bottom of thread discusses noexcept and optimization.

® “Summary of C++0x Feature Availability,” Usenet newsgroup
comp.std.c++, discussion initiated 7 March 2010.
» Includes discussion of noexcept and optimization.

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 46
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/

An Effective C++11/14 Sampler

Further Information

Cost of move operations:

® “std::string, SSO, and Move Semantics,” Scott Meyers, The View from
Avisteia, 10 April 2012.

® “Small String Optimization and Move Operations,” John Ahlgren,
John Ahlgren, 30 March 2012.

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 47
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/

An Effective C++11/14 Sampler

Further Information

The Concurrency API:

® The C++ Standard Library, Second Edition,
Nicolai M. Josuttis, Addison-Wesley, 2012.

® C++ Concurrency in Action, Anthony Williams,
Manning, 2012.

® “(Not) using std::thread,” Andrzej Krzemienski, Andrzej’s C++ blog,
14 November 2012.

® “N2802: A plea to reconsider detach-on-destruction for thread
objects,” Hans-]. Boehm, 4 December 2008.

® “std::futures from std::async aren't special!,” Scott Meyers, The View
from Aristeia, 20 March 2013.

® “async and ~future,” Herb Sutter, C++ Standardization Committee
Document N3451, 23 September 2012.

Scott Mevyers, Software Development Consultant © 2013 Scott Mevers, all rights reserved.
http://aristeia.com/ Slide 48
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/

An Effective C++11/14 Sampler

Licensing Information

Scott Meyers licenses materials for this and other training courses for
commercial or personal use. Details:

® Commercial use: http://aristeia.com/Licensing/licensing.html
® Personal use: http://aristeia.com/Licensing/personalUse.html

Courses currently available for personal use include:

| SOt Meyers Scott Meyers

Overview of

The New C++
(C++11/14)

Effective C++
inan

Embedded Environment

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/ Slide 49
Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.

http://aristeia.com/

An Effective C++11/14 Sampler

About Scott Meyers

Scott offers training and consulting services on

the design and implementation of C++ software
systems. His web site,

http://aristeia.com/

provides information on:

® Training and consulting services
® Books, articles, other publications
® Upcoming presentations

® Professional activities blog

Scott Meyers, Software Development Consultant © 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

Slide 50

Scott Meyers, Software Development Consultant

© 2013 Scott Meyers, all rights reserved.
http://aristeia.com/

