
© 2013 Adobe Systems Incorporated. All Rights Reserved.

Sean Parent | Principal Scientist
C++ Seasoning

© 2013 Adobe Systems Incorporated. All Rights Reserved.

3 Goals for Be!er Code

2

© 2013 Adobe Systems Incorporated. All Rights Reserved.

No Raw Loops

3

© 2013 Adobe Systems Incorporated. All Rights Reserved.

What is a Raw Loop?

4

 A raw loop is any loop inside a function where the function serves purpose larger than the algorithm
implemented by the loop

© 2013 Adobe Systems Incorporated. All Rights Reserved.

What is a Raw Loop?

5

void PanelBar::RepositionExpandedPanels(Panel* fixed_panel) {
 CHECK(fixed_panel);

 // First, find the index of the fixed panel.
 int fixed_index = GetPanelIndex(expanded_panels_, *fixed_panel);
 CHECK_LT(fixed_index, expanded_panels_.size());

 // Next, check if the panel has moved to the other side of another panel.
 const int center_x = fixed_panel->cur_panel_center();
 for (size_t i = 0; i < expanded_panels_.size(); ++i) {
 Panel* panel = expanded_panels_[i].get();
 if (center_x <= panel->cur_panel_center() ||
 i == expanded_panels_.size() - 1) {
 if (panel != fixed_panel) {
 // If it has, then we reorder the panels.
 ref_ptr<Panel> ref = expanded_panels_[fixed_index];
 expanded_panels_.erase(expanded_panels_.begin() + fixed_index);
 if (i < expanded_panels_.size()) {
 expanded_panels_.insert(expanded_panels_.begin() + i, ref);
 } else {
 expanded_panels_.push_back(ref);
 }
 }
 break;
 }
 }

 // Find the total width of the panels to the left of the fixed panel.
 int total_width = 0;
 fixed_index = -1;
 for (int i = 0; i < static_cast<int>(expanded_panels_.size()); ++i) {
 Panel* panel = expanded_panels_[i].get();
 if (panel == fixed_panel) {
 fixed_index = i;
 break;
 }
 total_width += panel->panel_width();
 }
 CHECK_NE(fixed_index, -1);
 int new_fixed_index = fixed_index;

 // Move panels over to the right of the fixed panel until all of the ones
 // on the left will fit.
 int avail_width = max(fixed_panel->cur_panel_left() - kBarPadding, 0);
 while (total_width > avail_width) {
 new_fixed_index--;
 CHECK_GE(new_fixed_index, 0);
 total_width -= expanded_panels_[new_fixed_index]->panel_width();
 }

 // Reorder the fixed panel if its index changed.
 if (new_fixed_index != fixed_index) {
 Panels::iterator it = expanded_panels_.begin() + fixed_index;
 ref_ptr<Panel> ref = *it;
 expanded_panels_.erase(it);
 expanded_panels_.insert(expanded_panels_.begin() + new_fixed_index, ref);
 fixed_index = new_fixed_index;
 }

 // Now find the width of the panels to the right, and move them to the
 // left as needed.
 total_width = 0;
 for (Panels::iterator it = expanded_panels_.begin() + fixed_index + 1;
 it != expanded_panels_.end(); ++it) {
 total_width += (*it)->panel_width();
 }

 avail_width = max(wm_->width() - (fixed_panel->cur_right() + kBarPadding),
 0);
 while (total_width > avail_width) {
 new_fixed_index++;
 CHECK_LT(new_fixed_index, expanded_panels_.size());
 total_width -= expanded_panels_[new_fixed_index]->panel_width();
 }

 // Do the reordering again.
 if (new_fixed_index != fixed_index) {
 Panels::iterator it = expanded_panels_.begin() + fixed_index;
 ref_ptr<Panel> ref = *it;
 expanded_panels_.erase(it);
 expanded_panels_.insert(expanded_panels_.begin() + new_fixed_index, ref);
 fixed_index = new_fixed_index;
 }

 // Finally, push panels to the left and the right so they don't overlap.
 int boundary = expanded_panels_[fixed_index]->cur_panel_left() - kBarPadding;
 for (Panels::reverse_iterator it =
 // Start at the panel to the left of 'new_fixed_index'.
 expanded_panels_.rbegin() +
 (expanded_panels_.size() - new_fixed_index);
 it != expanded_panels_.rend(); ++it) {
 Panel* panel = it->get();
 if (panel->cur_right() > boundary) {
 panel->Move(boundary, kAnimMs);
 } else if (panel->cur_panel_left() < 0) {
 panel->Move(min(boundary, panel->panel_width() + kBarPadding), kAnimMs);
 }
 boundary = panel->cur_panel_left() - kBarPadding;
 }

 boundary = expanded_panels_[fixed_index]->cur_right() + kBarPadding;
 for (Panels::iterator it = expanded_panels_.begin() + new_fixed_index + 1;
 it != expanded_panels_.end(); ++it) {
 Panel* panel = it->get();
 if (panel->cur_panel_left() < boundary) {
 panel->Move(boundary + panel->panel_width(), kAnimMs);
 } else if (panel->cur_right() > wm_->width()) {
 panel->Move(max(boundary + panel->panel_width(),
 wm_->width() - kBarPadding),
 kAnimMs);
 }
 boundary = panel->cur_right() + kBarPadding;
 }
}

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Why No Raw Loops?

6

 Difficult to reason about and difficult to prove post conditions

 Error prone and likely to fail under non-obvious conditions

 Introduce non-obvious performance problems

 Complicates reasoning about the surrounding code

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Alternatives to Raw Loops

7

 Use an existing algorithm

 Prefer standard algorithms if available

 Implement a known algorithm as a general function

 Contribute it to a library

 Preferably open source

 Invent a new algorithm

 Write a paper

 Give talks

 Become famous! ∅ Patents

© 2013 Adobe Systems Incorporated. All Rights Reserved.

No Raw Loops

8

If you want to improve the code quality in your organization,
replace all of your coding guidelines with one goal:

No Raw Loops

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Two Beautiful Examples

9

© 2013 Adobe Systems Incorporated. All Rights Reserved.

No Raw Loops

10

© 2013 Adobe Systems Incorporated. All Rights Reserved.

No Raw Loops

11

f

l

p

 rotate(f, l, p);

© 2013 Adobe Systems Incorporated. All Rights Reserved.

No Raw Loops

12

© 2013 Adobe Systems Incorporated. All Rights Reserved.

No Raw Loops

13

f

l

p rotate(p, f, l);

© 2013 Adobe Systems Incorporated. All Rights Reserved.

No Raw Loops

14

f

l

p if (p < f) rotate(p, f, l);
 if (l < p) rotate(f, l, p);

© 2013 Adobe Systems Incorporated. All Rights Reserved.

No Raw Loops

15

 if (p < f) rotate(p, f, l);
 if (l < p) rotate(f, l, p);

© 2013 Adobe Systems Incorporated. All Rights Reserved.

No Raw Loops

16

 if (p < f) rotate(p, f, l);
 if (l < p) rotate(f, l, p);

© 2013 Adobe Systems Incorporated. All Rights Reserved.

No Raw Loops

17

 if (p < f) return { p, rotate(p, f, l) };
 if (l < p) return { rotate(f, l, p), p };

C++
11f

l

p

r

© 2013 Adobe Systems Incorporated. All Rights Reserved.

No Raw Loops

18

 if (p < f) return { p, rotate(p, f, l) };
 if (l < p) return { rotate(f, l, p), p };
 return { f, l };

© 2013 Adobe Systems Incorporated. All Rights Reserved.

No Raw Loops

19

template <typename I> // I models RandomAccessIterator
auto slide(I f, I l, I p) -> pair<I, I>
{
 if (p < f) return { p, rotate(p, f, l) };
 if (l < p) return { rotate(f, l, p), p };
 return { f, l };
}

© 2013 Adobe Systems Incorporated. All Rights Reserved.

No Raw Loops

20

© 2013 Adobe Systems Incorporated. All Rights Reserved.

No Raw Loops

21

© 2013 Adobe Systems Incorporated. All Rights Reserved.

No Raw Loops

22

p

l

 stable_partition(p, l, s)

© 2013 Adobe Systems Incorporated. All Rights Reserved.

No Raw Loops

23

p

f

 stable_partition(f, p, not1(s))

© 2013 Adobe Systems Incorporated. All Rights Reserved.

No Raw Loops

24

 stable_partition(f, p, not1(s))
 stable_partition(p, l, s)

p

l

f

© 2013 Adobe Systems Incorporated. All Rights Reserved.

No Raw Loops

25

 stable_partition(f, p, not1(s))
 stable_partition(p, l, s)

© 2013 Adobe Systems Incorporated. All Rights Reserved.

No Raw Loops

26

 return { stable_partition(f, p, not1(s)),
 stable_partition(p, l, s) };

© 2013 Adobe Systems Incorporated. All Rights Reserved.

No Raw Loops

27

template <typename I, // I models BidirectionalIterator
 typename S> // S models UnaryPredicate
auto gather(I f, I l, I p, S s) -> pair<I, I>
{
 return { stable_partition(f, p, not1(s)),
 stable_partition(p, l, s) };
}

*

© 2013 Adobe Systems Incorporated. All Rights Reserved.

No Raw Loops

28

template <typename I, // I models BidirectionalIterator
 typename S> // S models UnaryPredicate
auto gather(I f, I l, I p, S s) -> pair<I, I>
{
 return { stable_partition(f, p, not1(s)),
 stable_partition(p, l, s) };
}

*

p

l

f

© 2013 Adobe Systems Incorporated. All Rights Reserved.

What about that messy loop?

29

 // Next, check if the panel has moved to the other side of another panel.

 for (size_t i = 0; i < expanded_panels_.size(); ++i) {
 Panel* panel = expanded_panels_[i].get();
 if (center_x <= panel->cur_panel_center() ||
 i == expanded_panels_.size() - 1) {
 if (panel != fixed_panel) {
 // If it has, then we reorder the panels.
 ref_ptr<Panel> ref = expanded_panels_[fixed_index];
 expanded_panels_.erase(expanded_panels_.begin() + fixed_index);
 if (i < expanded_panels_.size()) {
 expanded_panels_.insert(expanded_panels_.begin() + i, ref);
 } else {
 expanded_panels_.push_back(ref);
 }
 }
 break;
 }
 }

© 2013 Adobe Systems Incorporated. All Rights Reserved.

What about that bad loop?

30

 // Next, check if the panel has moved to the other side of another panel.

 for (size_t i = 0; i < expanded_panels_.size(); ++i) {
 Panel* panel = expanded_panels_[i].get();
 if (center_x <= panel->cur_panel_center() ||
 i == expanded_panels_.size() - 1) {
 if (panel != fixed_panel) {
 // If it has, then we reorder the panels.
 ref_ptr<Panel> ref = expanded_panels_[fixed_index];
 expanded_panels_.erase(expanded_panels_.begin() + fixed_index);
 expanded_panels_.insert(expanded_panels_.begin() + i, ref);
 }
 break;
 }
 }

© 2013 Adobe Systems Incorporated. All Rights Reserved.

What about that bad loop?

31

 // Next, check if the panel has moved to the other side of another panel.

 for (size_t i = 0; i < expanded_panels_.size(); ++i) {
 Panel* panel = expanded_panels_[i].get();
 if (center_x <= panel->cur_panel_center() ||
 i == expanded_panels_.size() - 1) {
 break;
 }
 }

 // Fix this code - panel is the panel found above.

 if (panel != fixed_panel) {
 // If it has, then we reorder the panels.
 ref_ptr<Panel> ref = expanded_panels_[fixed_index];
 expanded_panels_.erase(expanded_panels_.begin() + fixed_index);
 expanded_panels_.insert(expanded_panels_.begin() + i, ref);
 }

© 2013 Adobe Systems Incorporated. All Rights Reserved.

What about that bad loop?

32

 // Next, check if the panel has moved to the other side of another panel.

 for (size_t i = 0; i < expanded_panels_.size(); ++i) {
 Panel* panel = expanded_panels_[i].get();
 if (center_x <= panel->cur_panel_center()) break;
 }

 // Fix this code - panel is the panel found above.

 if (panel != fixed_panel) {
 // If it has, then we reorder the panels.
 ref_ptr<Panel> ref = expanded_panels_[fixed_index];
 expanded_panels_.erase(expanded_panels_.begin() + fixed_index);
 expanded_panels_.insert(expanded_panels_.begin() + i, ref);
 }

© 2013 Adobe Systems Incorporated. All Rights Reserved.

What about that bad loop?

33

 // Next, check if the panel has moved to the other side of another panel.

 auto p = find_if(begin(expanded_panels_), end(expanded_panels_),
 [&](const ref_ptr<Panel>& e){ return center_x <= e->cur_panel_center(); });

 // Fix this code - panel is the panel found above.

 if (panel != fixed_panel) {
 // If it has, then we reorder the panels.
 ref_ptr<Panel> ref = expanded_panels_[fixed_index];
 expanded_panels_.erase(expanded_panels_.begin() + fixed_index);
 expanded_panels_.insert(expanded_panels_.begin() + i, ref);
 }

C++
11

© 2013 Adobe Systems Incorporated. All Rights Reserved.

What about that bad loop?

34

 // Next, check if the panel has moved to the other side of another panel.

 auto p = find_if(begin(expanded_panels_), end(expanded_panels_),
 [&](const ref_ptr<Panel>& e){ return center_x <= e->cur_panel_center(); });

 // Fix this code - panel is the panel found above.

 if (panel != fixed_panel) {
 // If it has, then we reorder the panels.
 auto f = begin(expanded_panels_) + fixed_index;
 rotate(p, f, f + 1);
 }

© 2013 Adobe Systems Incorporated. All Rights Reserved.

What about that bad loop?

35

 // Next, check if the panel has moved to the other side of another panel.

 auto p = find_if(begin(expanded_panels_), end(expanded_panels_),
 [&](const ref_ptr<Panel>& e){ return center_x <= e->cur_panel_center(); });

 // If it has, then we reorder the panels.
 auto f = begin(expanded_panels_) + fixed_index;
 rotate(p, f, f + 1);

© 2013 Adobe Systems Incorporated. All Rights Reserved.

What about that bad loop?

36

 // Next, check if the panel has moved to the left side of another panel.

 auto p = find_if(begin(expanded_panels_), end(expanded_panels_),
 [&](const ref_ptr<Panel>& e){ return center_x <= e->cur_panel_center(); });

 // If it has, then we reorder the panels.
 auto f = begin(expanded_panels_) + fixed_index;
 rotate(p, f, f + 1);

© 2013 Adobe Systems Incorporated. All Rights Reserved.

What about that bad loop?

37

 // Next, check if the panel has moved to the left side of another panel.

 auto f = begin(expanded_panels_) + fixed_index;

 auto p = lower_bound(begin(expanded_panels_), f, center_x,
 [](const ref_ptr<Panel>& e, int x){ return e->cur_panel_center() < x; });

 // If it has, then we reorder the panels.
 rotate(p, f, f + 1);

 "is is 1/2 of a slide() that only supports a single element being selected

 "e other rotate() is the erase()/insert() further down in the function

 None of the special cases were necessary

 "is code is considerably more efficient

 Now we can have the conversation about supporting multiple selections and disjoint selections!

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Seasoning

38

 Use a range library (Boost or ASL)
auto p = find(begin(a), end(a), x);
auto p = find(a, x);

 Have many variants of simple, common algorithms such as #nd() and copy()

 Look for interface symmetry
sort(a, [](const employee& x, const employee& y){ return x.last < y.last; });
auto p = lower_bound(a, "Parent", [](const employee& x, const string& y){ return x.last < y; });

sort(a, less(), &employee::last);
auto p = lower_bound(a, "Parent", less(), &employee::last);

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Seasoning

39

 Range based for loops for for-each and simple transforms

for (const auto& e: r) f(e);
for (auto& e: r) e = f(e);

 Use const auto& for for-each and auto& for transforms
 Keep the body short

 A general guideline is no longer than composition of two functions with an operator

for (const auto& e: r) f(g(e));
for (const auto& e: r) { f(e); g(e); };
for (auto& e: r) e = f(e) + g(e);

 If the body is longer, factor it out and give it a name

C++
11

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Seasoning

40

 Use lambdas for predicates, comparisons, and projections, but keep them short

 Use function objects with template member function to simulate polymorphic lambda

struct last_name {
 using result_type = const string&;

 template <typename T>
 const string& operator()(const T& x) const { return x.last; }
};

// ...

auto p = lower_bound(a, "Parent", less(), last_name());

© 2013 Adobe Systems Incorporated. All Rights Reserved.

No Raw Synchronization Primitives

41

© 2013 Adobe Systems Incorporated. All Rights Reserved.

What are raw synchronization primitives?

 Synchronization primitives are basic constructs such as:

 Mutex

 Atomic

 Semaphore

 Memory Fence

42

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Why No Raw Synchronization Primitives?

43

You Will Likely Get It Wrong

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Problems with Locks

template <typename T>
class bad_cow {
 struct object_t {
 explicit object_t(const T& x) : data_m(x) { ++count_m; }
 atomic<int> count_m;
 T data_m; };
 object_t* object_m;
 public:
 explicit bad_cow(const T& x) : object_m(new object_t(x)) { }
 ~bad_cow() { if (0 == --object_m->count_m) delete object_m; }
 bad_cow(const bad_cow& x) : object_m(x.object_m) { ++object_m->count_m; }

 bad_cow& operator=(const T& x) {
 if (object_m->count_m == 1) object_m->data_m = x;
 else {
 object_t* tmp = new object_t(x);
 --object_m->count_m;
 object_m = tmp;
 }
 return *this;
 }
};

• There is a subtle race condition here:
• if count != 1 then the bad_cow could also is owned by another

thread(s)
• if the other thread(s) releases the bad_cow between these two

atomic operations
• then our count will fall to zero and we will leak the object

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Problems with Locks

template <typename T>
class bad_cow {
 struct object_t {
 explicit object_t(const T& x) : data_m(x) { ++count_m; }
 atomic<int> count_m;
 T data_m; };
 object_t* object_m;
 public:
 explicit bad_cow(const T& x) : object_m(new object_t(x)) { }
 ~bad_cow() { if (0 == --object_m->count_m) delete object_m; }
 bad_cow(const bad_cow& x) : object_m(x.object_m) { ++object_m->count_m; }

 bad_cow& operator=(const T& x) {
 if (object_m->count_m == 1) object_m->data_m = x;
 else {
 object_t* tmp = new object_t(x);
 if (0 == --object_m->count_m) delete object_m;
 object_m = tmp;
 }
 return *this;
 }
};

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Why No Raw Synchronization Primitives?

46

Object

thread

thread

thread

STOP

STOP

GO

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Amdahl’s Law

47

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Processors

P
e
rf
o
rm
a
n
c
e

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Minimize Locks

48

STOP

© 2013 Adobe Systems Incorporated. All Rights Reserved.

No Raw Synchronization Primitives

49

Task

Object

Task

...

...

?

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Tasks

 A task is a unit of work (a function) which is executed asynchronously

 Tasks are scheduled on a thread pool to optimize machine utilization

 "e arguments to the task and the task results are convenient places to communicate with other tasks

 Any function can be “packaged” into such a task

50

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Task Systems

 Unfortunately, we don’t yet have a standard async task model

 std::async() is currently de#ned to be based on threads

 "is may change in C++14 and Visual C++ 2012 already implements std::async() as a task model

 Windows - Window "read Pool and PPL

 Apple - Grand Central Dispatch (libdispatch)

 Open sourced, runs on Linux and Android

 Intel TBB - many platform

51

© 2013 Adobe Systems Incorporated. All Rights Reserved.

C++14 compatible async with libdispatch

namespace adobe {

template <typename F, typename ...Args>
auto async(F&& f, Args&&... args)
 -> std::future<typename std::result_of<F (Args...)>::type>
{
 using result_type = typename std::result_of<F (Args...)>::type;
 using packaged_type = std::packaged_task<result_type ()>;

 auto p = new packaged_type(std::forward<F>(f), std::forward<Args>(args)...);
 auto result = p->get_future();

 dispatch_async_f(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0),
 p, [](void* f_) {
 packaged_type* f = static_cast<packaged_type*>(f_);
 (*f)();
 delete f;
 });

 return result;
}

} // namespace adobe

52

future

© 2013 Adobe Systems Incorporated. All Rights Reserved.

No Raw Synchronization Primitives

53

Task

Args

Task
...

...
future.get()future.get()

Result

STOP

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Task Systems

 Blocking on std::future.get() has two problems

 One thread resource is consumed, increasing contention

 Any subsequent non-dependent calculations on the task are also blocked

 Unfortunately, C++11 doesn’t have dependent tasks

 GCD has serialized queues and groups

 PPL has chained tasks

 TBB has $ow graphs

 All are able to specify dependent tasks, including joins

54

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Task Systems

55

Task Task

Task

Group
210

Result Result

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Seasoning

 std::list can be used in a pinch to create thread safe data structures with splice

template <typename T>
class concurrent_queue
{
 mutex mutex_;
 list<T> q_;
 public:
 void enqueue(T x)
 {
 list<T> tmp;
 tmp.push_back(move(x));
 {
 lock_guard<mutex> lock(mutex);
 q_.splice(end(q_), tmp);
 }
 }

 // ...
};

56

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Seasoning

 std::packaged_task can be used to marshall results, including exceptions, from tasks
 std::packaged_task is also useful to safely bridge C++ code with exceptions to C code
 see prior async() implementation for an example

57

© 2013 Adobe Systems Incorporated. All Rights Reserved.

No Raw Pointers

58

© 2013 Adobe Systems Incorporated. All Rights Reserved.

What is a Raw Pointer?

59

 A pointer to an object with implied ownership and reference semantics

 T* p = new T

 unique_ptr<T>

 shared_ptr<T>

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Why pointers (heap allocations)?

60

 Runtime variable size
 Runtime polymorphic
 Container

 Satisfy complexity or stability requirements within a container (list vs. vector)
 Shared storage for asynchronous communication (future, message queue, …)
 Optimization to copy

 Copy deferral (copy-on-write)
 Immutable item
 Transform Copy to Move [???]

 To separate implementation from interface (PIMPL)

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Why Pointers

 For containers we’ve moved from intrusive to non-intrusive (STL) containers
 Except for hierarchies - but containment hierarchies or non-intrusive hierarchies are both viable options

 PIMPL and copy optimizations are trivially wrapped
 See previous section regarding shared storage for asynchronous operations

 Runtime polymorphism

61

client library

defectsguidelinescout

using object_t = int;

void draw(const object_t& x, ostream& out, size_t position)
{ out << string(position, ' ') << x << endl; }

using document_t = vector<object_t>;

void draw(const document_t& x, ostream& out, size_t position)
{
 out << string(position, ' ') << "<document>" << endl;
 for (const auto& e : x) draw(e, out, position + 2);
 out << string(position, ' ') << "</document>" << endl;
}

libraryclient

defectsguidelinescout

int main()
{
 document_t document;

 document.emplace_back(0);
 document.emplace_back(1);
 document.emplace_back(2);
 document.emplace_back(3);

 draw(document, cout, 0);
}

cout

<document>

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Polymorphism

 What happens if we want the document to hold any drawable object?

64

client library

defectsguidelinescout

class object_t {
 public:
 virtual ~object_t() { }
 virtual void draw(ostream&, size_t) const = 0;
};

using document_t = vector<shared_ptr<object_t>>;

void draw(const document_t& x, ostream& out, size_t position)
{
 out << string(position, ' ') << "<document>" << endl;
 for (const auto& e : x) e->draw(out, position + 2);
 out << string(position, ' ') << "</document>" << endl;
}

libraryclient

defectsguidelinescout

class my_class_t : public object_t
{
 public:
 void draw(ostream& out, size_t position) const
 { out << string(position, ' ') << "my_class_t" << endl; }
 /* ... */
};

int main()
{
 document_t document;

 document.emplace_back(new my_class_t());

 draw(document, cout, 0);
}

defects

• An instance of my_class_t will be allocated first

cout

<document>

 document.emplace_back(new my_class_t());

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Deep problem

 Changed semantics of copy, assignment, and equality of my document
 leads to incidental data structures
 thread safety concerns

67

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Semantics & Syntax

 We de#ne an operation in terms of the operation’s semantics:
 “Assignment is a procedure taking two objects of the same type that makes the #rst object equal to the

second without modifying the second.”

68

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Semantics & Syntax

69

shared_ptr<T>shared_ptr<T>

T

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Semantics & Syntax

70

shared_ptr<T>shared_ptr<T>

T

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Semantics & Syntax

 Considered as individual types, assignment and copy hold their regular semantic meanings
 However, this fails to account for the relationships (the arrows) which form an incidental data-structure.

You cannot operate on T through one of the shared pointers without considering the effect on the other
shared pointer

71

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Semantics & Syntax

72

shared_ptr<T>shared_ptr<T>

T

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Semantics & Syntax

 If we extend our notion of object type to include the directly related part then we have intersecting objects
which will interfere with each other

73

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Semantics & Syntax

74

shared_ptr<T>shared_ptr<T>

T

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Semantics & Syntax

 When we consider the whole, the standard syntax for copy and assignment no longer have their regular
semantics.
 "is structure is still copyable and assignable but these operations must be done through other means

 "e shared structure also breaks our ability to reason locally about the code

75

A shared pointer is as good as a global variable

client library

defectsguidelinescout

class object_t {
 public:
 template <typename T> // T models Drawable
 object_t(T x) : self_(make_shared<model<T>>(move(x)))
 { }
 void draw(ostream& out, size_t position) const
 { self_->draw_(out, position); }

 private:
 struct concept_t {
 virtual ~concept_t() = default;
 virtual void draw_(ostream&, size_t) const = 0;
 };

 template <typename T>
 struct model : concept_t {
 model(T x) : data_(move(x)) { }
 void draw_(ostream& out, size_t position) const
 { data_.draw(out, position); }

 T data_;
 };

 shared_ptr<const concept_t> self_;
};

client library

defectsguidelinescout

 public:
 template <typename T> // T models Drawable
 object_t(T x) : self_(make_shared<model<T>>(move(x)))
 { }
 void draw(ostream& out, size_t position) const
 { self_->draw_(out, position); }

 private:
 struct concept_t {
 virtual ~concept_t() = default;
 virtual void draw_(ostream&, size_t) const = 0;
 };

 template <typename T>
 struct model : concept_t {
 model(T x) : data_(move(x)) { }
 void draw_(ostream& out, size_t position) const
 { data_.draw(out, position); }

 T data_;
 };

 shared_ptr<const concept_t> self_;
};

client library

defectsguidelinescout

 template <typename T> // T models Drawable
 object_t(T x) : self_(make_shared<model<T>>(move(x)))
 { }
 void draw(ostream& out, size_t position) const
 { self_->draw_(out, position); }

 private:
 struct concept_t {
 virtual ~concept_t() = default;
 virtual void draw_(ostream&, size_t) const = 0;
 };

 template <typename T>
 struct model : concept_t {
 model(T x) : data_(move(x)) { }
 void draw_(ostream& out, size_t position) const
 { data_.draw(out, position); }

 T data_;
 };

 shared_ptr<const concept_t> self_;
};

using document_t = vector<object_t>;

client library

defectsguidelinescout

 object_t(T x) : self_(make_shared<model<T>>(move(x)))
 { }
 void draw(ostream& out, size_t position) const
 { self_->draw_(out, position); }

 private:
 struct concept_t {
 virtual ~concept_t() = default;
 virtual void draw_(ostream&, size_t) const = 0;
 };

 template <typename T>
 struct model : concept_t {
 model(T x) : data_(move(x)) { }
 void draw_(ostream& out, size_t position) const
 { data_.draw(out, position); }

 T data_;
 };

 shared_ptr<const concept_t> self_;
};

using document_t = vector<object_t>;

client library

defectsguidelinescout

 { }
 void draw(ostream& out, size_t position) const
 { self_->draw_(out, position); }

 private:
 struct concept_t {
 virtual ~concept_t() = default;
 virtual void draw_(ostream&, size_t) const = 0;
 };

 template <typename T>
 struct model : concept_t {
 model(T x) : data_(move(x)) { }
 void draw_(ostream& out, size_t position) const
 { data_.draw(out, position); }

 T data_;
 };

 shared_ptr<const concept_t> self_;
};

using document_t = vector<object_t>;

void draw(const document_t& x, ostream& out, size_t position)

client library

defectsguidelinescout

 void draw(ostream& out, size_t position) const
 { self_->draw_(out, position); }

 private:
 struct concept_t {
 virtual ~concept_t() = default;
 virtual void draw_(ostream&, size_t) const = 0;
 };

 template <typename T>
 struct model : concept_t {
 model(T x) : data_(move(x)) { }
 void draw_(ostream& out, size_t position) const
 { data_.draw(out, position); }

 T data_;
 };

 shared_ptr<const concept_t> self_;
};

using document_t = vector<object_t>;

void draw(const document_t& x, ostream& out, size_t position)
{

client library

defectsguidelinescout

 { self_->draw_(out, position); }

 private:
 struct concept_t {
 virtual ~concept_t() = default;
 virtual void draw_(ostream&, size_t) const = 0;
 };

 template <typename T>
 struct model : concept_t {
 model(T x) : data_(move(x)) { }
 void draw_(ostream& out, size_t position) const
 { data_.draw(out, position); }

 T data_;
 };

 shared_ptr<const concept_t> self_;
};

using document_t = vector<object_t>;

void draw(const document_t& x, ostream& out, size_t position)
{
 out << string(position, ' ') << "<document>" << endl;

client library

defectsguidelinescout

 private:
 struct concept_t {
 virtual ~concept_t() = default;
 virtual void draw_(ostream&, size_t) const = 0;
 };

 template <typename T>
 struct model : concept_t {
 model(T x) : data_(move(x)) { }
 void draw_(ostream& out, size_t position) const
 { data_.draw(out, position); }

 T data_;
 };

 shared_ptr<const concept_t> self_;
};

using document_t = vector<object_t>;

void draw(const document_t& x, ostream& out, size_t position)
{
 out << string(position, ' ') << "<document>" << endl;
 for (const auto& e : x) e.draw(out, position + 2);

client library

defectsguidelinescout

 private:
 struct concept_t {
 virtual ~concept_t() = default;
 virtual void draw_(ostream&, size_t) const = 0;
 };

 template <typename T>
 struct model : concept_t {
 model(T x) : data_(move(x)) { }
 void draw_(ostream& out, size_t position) const
 { data_.draw(out, position); }

 T data_;
 };

 shared_ptr<const concept_t> self_;
};

using document_t = vector<object_t>;

void draw(const document_t& x, ostream& out, size_t position)
{
 out << string(position, ' ') << "<document>" << endl;
 for (const auto& e : x) e.draw(out, position + 2);
 out << string(position, ' ') << "</document>" << endl;

client library

defectsguidelinescout

 struct concept_t {
 virtual ~concept_t() = default;
 virtual void draw_(ostream&, size_t) const = 0;
 };

 template <typename T>
 struct model : concept_t {
 model(T x) : data_(move(x)) { }
 void draw_(ostream& out, size_t position) const
 { data_.draw(out, position); }

 T data_;
 };

 shared_ptr<const concept_t> self_;
};

using document_t = vector<object_t>;

void draw(const document_t& x, ostream& out, size_t position)
{
 out << string(position, ' ') << "<document>" << endl;
 for (const auto& e : x) e.draw(out, position + 2);
 out << string(position, ' ') << "</document>" << endl;
}

libraryclient

defectsguidelinescout

class my_class_t
{
 public:
 void draw(ostream& out, size_t position) const
 { out << string(position, ' ') << "my_class_t" << endl; }

};

int main()
{
 document_t document;

 document.emplace_back(my_class_t());

 draw(document, cout, 0);
}

cout

<document>

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Seasoning

 Using make_shared<> to create shared_ptrs eliminates an extra heap allocation
 template <typename T> // T models Drawable
 object_t(T x) : self_(make_shared<model<T>>(move(x)))
 { }

 Pass sink arguments by value and move into place

 Come to “Inheritance is the base class of Evil” talk for more on this topic

87

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Goals Recap

 No Raw Loops
 No Raw Syntonization Primitives
 No Raw Pointers

88

© 2013 Adobe Systems Incorporated. All Rights Reserved.

Locality of Reasoning

89

 Easier to reason about

 Composable

 General

 Correct

 Efficient

© 2013 Adobe Systems Incorporated. All Rights Reserved.

© 2013 Adobe Systems Incorporated. All Rights Reserved.

No Raw Loops

91

template <typename I, // I models BidirectionalIterator
 typename S> // S models UnaryPredicate
auto gather(I f, I l, I p, S s) -> pair<I, I>
{
 using value_type = typename iterator_traits<I>::value_type;

 return { stable_partition(f, p, [&](const value_type& x){ return !s(x); }),
 stable_partition(p, l, s) };
}

 not1 is not lambda friendly because of the argument_type requirement

 With C++ 14 we should be able to express this with a const auto& argument

 Perhaps with a #xed not1 or !bind

 "e BidirectionalIterator requirement should be weakened to ForwardIterator

 See SGI STL for an implementation

 "e gather() function was developed with Marshall Clow as in Boost.

C++
11

Back

