C++ Seasoning
Sean Parent | Principal Scientist

-~ s - ‘,
© 2013 Adobe Systems Incorporated. All Rights Reserved.



3 Goals for Better Code




No Raw Loops

© 2013 Adobe Systems Incorporated. All Rights Reserved.




What is a Raw Loop?

A raw loop is any loop inside a function where the function serves purpose larger than the algorithm
implemented by the loop

© 2013 Adobe Systems Incorporated. All Rights Reserved.




What is a Raw Loop?

void PanelBar::RepositionExpandedPanels(Panelx fixed_panel) {
CHECK(fixed_panel);

// First, find the index of the fixed panel.
int fixed_index = GetPanellndex(expanded_panels_, xfixed_panel);
CHECK_LT(fixed_index, expanded_panels_.size());

// Next, check if the panel has moved to the other side of another panel.
const int center_x = fixed_panel->cur_panel_center();
for (size_t 1 = 0; 1 < expanded_panels_.size(); ++i) {
Panelx panel = expanded_panels_[i].get();
if (center_x <= panel->cur_panel_center() ||
i == expanded_panels_.size() - 1) {
if (panel !'= fixed_panel) A
// If it has, then we reorder the panels.
ref_ptr<Panel> ref = expanded_panels_[fixed_index];
expanded_panels_.erase(expanded_panels_.begin() + fixed_index);
if (i < expanded_panels_.size()) {
expanded_panels_.insert(expanded_panels_.begin() + i, ref);
} else {
expanded_panels_.push_back(ref);
s
b
break;
I
I3

© 2013 Adobe Systems Incorporated. All Rights Reserved.




Why No Raw Loops?

Difficult to reason about and difficult to prove post conditions
Error prone and likely to fail under non-obvious conditions
Introduce non-obvious performance problems

Complicates reasoning about the surrounding code

© 2013 Adobe Systems Incorporated. All Rights Reserved.




Alternatives to Raw Loops

Use an existing algorithm
Prefer standard algorithms if available
Implement a known algorithm as a general function
Contribute it to a library
Preferably open source
Invent a new algorithm
Write a paper XS
Give talks Qa’&e(\

Become famous!

© 2013 Adobe Systems Incorporated. All Rights Reserved.




No Raw Loops

If you want to improve the code quality in your organization,
replace all of your coding guidelines with one goal:

No Raw Loops




Two Beautiful Examples




No Raw Loops

© 2013 Adobe Systems Incorporated. All Rights Reserved. 10 "‘




No Raw Loops

<+ f — rotate(f, 1, p);

© 2013 Adobe Systems Incorporated. All Rights Reserved. n "‘




No Raw Loops

© 2013 Adobe Systems Incorporated. All Rights Reserved. 12 "‘




No Raw Loops

<+ p - rotate(p, f, 1);

© 2013 Adobe Systems Incorporated. All Rights Reserved. 13 "‘




No Raw Loops

<+ p - if (p < f) rotate(p, f, 1);
if (1 < p) rotate(f, 1, p);
< f —
<+ | -
—

© 2013 Adobe Systems Incorporated. All Rights Reserved. 14 "‘




No Raw Loops

if
< if

f) rotate(p, f, 1);
p) rotate(f, 1, p);

p <
1 <

© 2013 Adobe Systems Incorporated. All Rights Reserved. 15 "‘




No Raw Loops

if
if (

f) rotate(p, f, 1);
p) rotate(f, 1, p);

p <
1 <

© 2013 Adobe Systems Incorporated. All Rights Reserved. 16 "‘




No Raw Loops

f) return { p, rotate(p, f, 1) };
p) return { rotate(f, 1, p), p };

i Cxx\\

© 2013 Adobe Systems Incorporated. All Rights Reserved. 17 "‘




No Raw Loops

if (p < f) return { p, rotate(p, f, 1) };
if (1L < p) return { rotate(f, 1, p), p };
return { f, 1 };

© 2013 Adobe Systems Incorporated. All Rights Reserved.




No Raw Loops

template <typename I> // I models RandomAccessIterator
auto slide(I f, I 1, I p) —> pair<I, I>

{
if (p < f) return { p, rotate(p, f, 1) };
if (U < p) return { rotate(f, 1, p), p };
return { f, 1 };
}
¢
S ——

© 2013 Adobe Systems Incorporated. All Rights Reserved. 19

A




No Raw Loops

:
:
:
J

© 2013 Adobe Systems Incorporated. All Rights Reserved. 20 "‘




No Raw Loops

I
I
—

© 2013 Adobe Systems Incorporated. All Rights Reserved. 21 "‘




No Raw Loops

stable_partition(p, 1, s)

© 2013 Adobe Systems Incorporated. All Rights Reserved. 22 ' ‘
A




No Raw Loops

stable_partition(f, p, notl(s))

© 2013 Adobe Systems Incorporated. All Rights Reserved. 23 ' ‘
A




No Raw Loops

stable_partition(f, p, notl(s))
stable_partition(p, 1, s)

© 2013 Adobe Systems Incorporated. All Rights Reserved. 24 ' ‘
A




No Raw Loops

stable_partition(f, p, notl(s))
< stable_partition(p, 1, s)

© 2013 Adobe Systems Incorporated. All Rights Reserved. 25 ' ‘
A




No Raw Loops

return { stable_partition(f, p, notl(s)),
< stable_partition(p, 1, s) };

© 2013 Adobe Systems Incorporated. All Rights Reserved. 26 "‘




No Raw Loops

template <typename I, // I models Bidirectionallterator
typename S> // S models UnaryPredicate

auto gather(I f, I 1, I p, S s) — pair<I, I>

{

return { stable_partition(f, p, notl(s)),
< stable_partition(p, 1, s) };

| *

© 2013 Adobe Systems Incorporated. All Rights Reserved.




No Raw Loops

<« f - template <typename I, // I models Bidirectionallterator
typename S> // S models UnaryPredicate
auto gather(I f, I 1, I p, S s) — pair<I, I>
{
return { stable_partition(f, p, notl(s)),
stable_partition(p, 1, s) };
s
p_
I
|
'L_

| *

© 2013 Adobe Systems Incorporated. All Rights Reserved.




What about that messy loop?

// Next, check if the panel has moved to the other side of another panel.

for (size_t i1 = @; i < expanded_panels_.size(); ++i) {
Panelx panel = expanded_panels_[i]l.get();
if (center_x <= panel->cur_panel_center() ||
i == expanded_panels_.size() - 1) {
if (panel !'= fixed_panel) {
// If it has, then we reorder the panels.
ref_ptr<Panel> ref = expanded_panels_[fixed_index];
expanded_panels_.erase(expanded_panels_.begin() + fixed_index);
if (i < expanded_panels_.size()) {
expanded_panels_.insert(expanded_panels_.begin() + i, ref);
} else {
expanded_panels_.push_back(ref);
I3
¥
break:;
b
¥

© 2013 Adobe Systems Incorporated. All Rights Reserved.




What about that bad loop?

// Next, check if the panel has moved to the other side of another panel.

for (size_t i = 0; 1 < expanded_panels_.size(); ++i) {
Panelx panel = expanded_panels_[i]l.get();
if (center_x <= panel->cur_panel_center() ||
i == expanded_panels_.size() - 1) {
if (panel !'= fixed_panel) {
// If it has, then we reorder the panels.
ref_ptr<Panel> ref = expanded_panels_[fixed_index];
expanded_panels_.erase(expanded_panels_.begin() + fixed_index);
expanded_panels_.insert(expanded_panels_.begin() + i, ref);
b
break;
¥
¥

© 2013 Adobe Systems Incorporated. All Rights Reserved. 30 ' ‘
A




What about that bad loop?

// Next, check if the panel has moved to the other side of another panel.

for (size_t i = 0; 1 < expanded_panels_.size(); ++i) {
Panelx panel = expanded_panels_[i]l.get();
if (center_x <= panel->cur_panel_center() ||
i == expanded_panels_.size() - 1) {
break;
}
}

// Fix this code - panel is the panel found above.

if (panel !'= fixed_panel) {
// If it has, then we reorder the panels.
ref_ptr<Panel> ref = expanded_panels_[fixed_index];
expanded_panels_.erase(expanded_panels_.begin() + fixed_index);
expanded_panels_.insert(expanded_panels_.begin() + i, ref);

© 2013 Adobe Systems Incorporated. All Rights Reserved. Ell "‘




What about that bad loop?

// Next, check if the panel has moved to the other side of another panel.

for (size_t i = 0; i < expanded_panels_.size(); ++i) {
Panelx panel = expanded_panels_[i]l.get();
if (center_x <= panel->cur_panel_center()) break;

¥

// Fix this code - panel is the panel found above.

if (panel !'= fixed_panel) {
// If it has, then we reorder the panels.
ref_ptr<Panel> ref = expanded_panels_[fixed_index];
expanded_panels_.erase(expanded_panels_.begin() + fixed_index);
expanded_panels_.insert(expanded_panels_.begin() + i, ref);

© 2013 Adobe Systems Incorporated. All Rights Reserved.




What about that bad loop?

// Next, check if the panel has moved to the other side of another panel.

auto p = find_if(begin(expanded_panels_), end(expanded_panels_),
[&] (const ref_ptr<Panel>& e){ return center_x <= e->cur_panel_center(); });

// Fix this code - panel is the panel found above. \\
if (panel != fixed_panel) { CXX
// If it has, then we reorder the panels.

ref_ptr<Panel> ref = expanded_panels_[fixed_index];
expanded_panels_.erase(expanded_panels_.begin() + fixed_index);
expanded_panels_.insert(expanded_panels_.begin() + i, ref);

© 2013 Adobe Systems Incorporated. All Rights Reserved. 33 ' ‘
A




What about that bad loop?

// Next, check if the panel has moved to the other side of another panel.

auto p = find_if(begin(expanded_panels_), end(expanded_panels_),
[&] (const ref_ptr<Panel>& e){ return center_x <= e->cur_panel_center(); });

// Fix this code - panel is the panel found above.

if (panel !'= fixed_panel) {
// If it has, then we reorder the panels.
auto f = begin(expanded_panels_) + fixed_index;
rotate(p, f, f + 1);

I3

© 2013 Adobe Systems Incorporated. All Rights Reserved.




What about that bad loop?

// Next, check if the panel has moved to the other side of another panel.

auto p = find_if(begin(expanded_panels_), end(expanded_panels_),
[&] (const ref_ptr<Panel>& e){ return center_x <= e->cur_panel_center(); });

// If it has, then we reorder the panels.
auto f = begin(expanded_panels_) + fixed_index;
rotate(p, f, f + 1);

© 2013 Adobe Systems Incorporated. All Rights Reserved.




What about that bad loop?

// Next, check if the panel has moved to the left side of another panel.

auto p = find_if(begin(expanded_panels_), end(expanded_panels_),
[&] (const ref_ptr<Panel>& e){ return center_x <= e->cur_panel_center(); });

// If it has, then we reorder the panels.
auto f = begin(expanded_panels_) + fixed_index;
rotate(p, f, f + 1);

© 2013 Adobe Systems Incorporated. All Rights Reserved.




What about that bad loop?

// Next, check if the panel has moved to the left side of another panel.
auto f = begin(expanded_panels_) + fixed_index;

auto p = lower_bound(begin(expanded_panels_), f, center_x,
[1(const ref_ptr<Panel>& e, int x){ return e->cur_panel_center() < x; });

// If it has, then we reorder the panels.
rotate(p, f, f + 1);

This is 1/2 of a slide () that only supports a single element being selected
The other rotate() isthe erase()/insert() further down in the function
None of the special cases were necessary

This code is considerably more efficient

Now we can have the conversation about supporting multiple selections and disjoint selections!

© 2013 Adobe Systems Incorporated. All Rights Reserved. 37

A




Seasoning

Use a range library (Boost or ASL)

auto p = find(begin(a), end(a), x);
auto p = find(a, x);

Have many variants of simple, common algorithms such as find() and copy()

Look for interface symmetry

sort(a, []l(const employee& x, const employee& y){ return x.last < y.last; });
auto p = lower_bound(a, "Parent", [](const employee& x, const string& y){ return x.last < vy; });

sort(a, less(), &employee::last);
auto p = lower_bound(a, "Parent", less(), &employee::last);

© 2013 Adobe Systems Incorporated. All Rights Reserved. 38 ' ‘
A




Seasoning

Range based for loops for for-each and simple transforms

for (const auto& e: r) f(e); )éxc\
for (auto& e: r) e = f(e); (:;X(

Use const auto& for for-each and auto& for transforms
Keep the body short

A general guideline is no longer than composition of two functions with an operator

for (const auto& e: r) f(g(e));
for (const auto& e: r) { f(e); gle); };
for (auto& e: r) e = f(e) + g(e);

If the body is longer, factor it out and give it a name

© 2013 Adobe Systems Incorporated. All Rights Reserved.




Seasoning

Use lambdas for predicates, comparisons, and projections, but keep them short

Use function objects with template member function to simulate polymorphic lambda

struct last_name {
using result_type = const string&;

template <typename T>
const string& operator()(const T& x) const { return x.last; }

};
[/ eun

auto p = lower_bound(a, "Parent", less(), last_name());

© 2013 Adobe Systems Incorporated. All Rights Reserved. 40 ' ‘
A




No Raw Synchronization Primitives




What are raw synchronization primitives?

Synchronization primitives are basic constructs such as:
Mutex
Atomic
Semaphore

Memory Fence

© 2013 Adobe Systems Incorporated. All Rights Reserved.




Why No Raw Synchronization Primitives?

You Will Likely Get It Wrong




Problems with Locks

template <typename T>
class bad_cow {
struct object_t {
explicit object_t(const T& x) : data_m(x) { ++count_m; }
atomic<int> count_m;

T data_m; };
object_tx object_m;
public:
explicit bad_cow(const T& x) : object_m(new object_t(x)) { }
~bad_cow() { if (@ == ——object_m->count_m) delete object_m; }

bad_cow(const bad_cow& x) : object_m(x.object_m) { ++object_m->count_m; }

bad cow& operator=(const T& x) {

( if (object_m->count_m == 1) object_m->data_m = Xx; J
else {
object tx tmp = new object t(x);
( ——object_m->count_m; J
ODJject_m = tmp;
} . * There is a subtle race condition here:
) return xthis; e if count != | then the bad_cow could also is owned by another
}s thread(s)

* if the other thread(s) releases the bad_cow between these two
atomic operations
* then our count will fall to zero and we will leak the object

© 2013 Adobe Systems Incorporated. All Rights Reserved.

A




Problems with Locks

template <typename T>
class bad_cow {
struct object_t {
explicit object_t(const T& x) : data_m(x) { ++count_m; }
atomic<int> count_m;

T data_m; };
object_tx object_m;
public:
explicit bad_cow(const T& x) : object_m(new object_t(x)) { }
~bad_cow() { if (@ == ——object_m->count_m) delete object_m; }

bad_cow(const bad_cow& x) : object_m(x.object_m) { ++object_m->count_m; }

bad_cow& operator=(const T& x) {

if (object_m->count_m == 1) object_m->data_m = x;
else {
object tx tmp = new object t(x);
( if (@ == ——object_m->count_m) delete object_m; )

object_m = tmp;
}

return xthis;

© 2013 Adobe Systems Incorporated. All Rights Reserved.

A




Why No Raw Synchronization Primitives?

thread

| thread

| thread .

© 2013 Adobe Systems Incorporated. All Rights Reserved. 46 "‘




Amdahl's Law

Performance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Processors

© 2013 Adobe Systems Incorporated. All Rights Reserved.




Minimize Locks

© 2013 Adobe Systems Incorporated. All Rights Reserved. 48 "‘




No Raw Synchronization Primitives

Task

© 2013 Adobe Systems Incorporated. All Rights Reserved. 49 ' ‘
A




A task is a unit of work (a function) which is executed asynchronously

Tasks are scheduled on a thread pool to optimize machine utilization

The arguments to the task and the task results are convenient places to communicate with other tasks

Any function can be “packaged” into such a task

© 2013 Adobe Systems Incorporated. All Rights Reserved.




IES S ENS

Unfortunately, we don't yet have a standard async task model

std::async() is currently defined to be based on threads

This may change in C++14 and Visual C++ 2012 already implements std::async() as a task model

Windows - Window Thread Pool and PPL
Apple - Grand Central Dispatch (libdispatch)
Open sourced, runs on Linux and Android

Intel TBB - many platform

© 2013 Adobe Systems Incorporated. All Rights Reserved.




C++14 compatible async with libdispatch

namespace adobe {

template <typename F, typename ...Args>

auto async(F&& f, Args&&... args)
—> std::future<typename std::result_of<F (Args...)>::type>

{
using result_type = typename std::result_of<F (Args...)>::type;
using packaged_type = std::packaged_task<result_type ()>;
auto p = new packaged_type(std::forward<F>(f), std::forward<Args>(args)...);
auto result = p—>get_future();
dispatch_async_f(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0),
p, [l1(voidx f_) {
packaged_typex f = static_cast<packaged_typex>(f_);
() ();
delete f;
1)
return result;
I3

} // namespace adobe

© 2013 Adobe Systems Incorporated. All Rights Reserved.




No Raw Synchronization Primitives

Task

Task

© 2013 Adobe Systems Incorporated. All Rights Reserved. ' ‘
A




IES S ENS

Blocking on std::future.get() has two problems
One thread resource is consumed, increasing contention

Any subsequent non-dependent calculations on the task are also blocked

Unfortunately, C++11 doesn't have dependent tasks
GCD has serialized queues and groups
PPL has chained tasks
TBB has flow graphs

All are able to specify dependent tasks, including joins

© 2013 Adobe Systems Incorporated. All Rights Reserved.




IES S ENS

Task Task

Group

| Task '

© 2013 Adobe Systems Incorporated. All Rights Reserved. 55 "‘




Seasoning

std::list can be used in a pinch to create thread safe data structures with splice

template <typename T>
class concurrent_queue
{
mutex mutex_;
list<T> q_;
public:
void enqueue(T Xx)
{
list<T> tmp;
tmp.push_back(move(x));

lock_guard<mutex> lock(mutex);
q_.splice(end(q_), tmp);
¥

/] s

© 2013 Adobe Systems Incorporated. All Rights Reserved. 56 ' ‘
A




Seasoning

std::packaged_task can be used to marshall results, including exceptions, from tasks
std::packaged_task is also useful to safely bridge C++ code with exceptions to C code

see prior async() implementation for an example

© 2013 Adobe Systems Incorporated. All Rights Reserved.




No Raw Pointers

© 2013 Adobe Systems Incorporated. All Rights Reserved.




What is a Raw Pointer?

A pointer to an object with implied ownership and reference semantics
T*p=newT
unique_ptr<T>

shared_ptr<T>

© 2013 Adobe Systems Incorporated. All Rights Reserved. 59 "‘




Why pointers (heap allocations)?

Runtime variable size

Runtime polymorphic

Container
Satisfy complexity or stability requirements within a container (list vs. vector)
Shared storage for asynchronous communication (future, message queue, ...)
Optimization to copy

Copy deferral (copy-on-write)

Immutable item

Transform Copy to Move [???]

To separate implementation from interface (PIMPL)

© 2013 Adobe Systems Incorporated. All Rights Reserved.




Why Pointers

For containers we've moved from intrusive to non-intrusive (STL) containers

Except for hierarchies - but containment hierarchies or non-intrusive hierarchies are both viable options
PIMPL and copy optimizations are trivially wrapped
See previous section regarding shared storage for asynchronous operations

Runtime polymorphism

© 2013 Adobe Systems Incorporated. All Rights Reserved.




( client m

using object_t = int;

void draw(const object_t& x, ostream& out, size_t position)
{ out << string(position, ' ') << x << endl; }

using document_t = vector<object_t>;

void draw(const document_t& x, ostream& out, size_t position)

{

out << string(position, ' ') << "<document>" << endl;
for (const auto& e : x) draw(e, out, position + 2);
out << string(position, ' ') << '"</document>" << endl;

( cout “guidelines“ defects ]



H library ]

int main()

{

document_t document;

document.emplace_back(0);
document.emplace_back(1);
document.emplace_back(2);
document.emplace_back(3);

draw(document, cout, 0);




Polymorphism

What happens if we want the document to hold any drawable object?

© 2013 Adobe Systems Incorporated. All Rights Reserved.




(e TR

class object_t {
public:
virtual ~object_t() { }
virtual void draw(ostream&, size t) const = 0;

¥
using document_t = vector<shared_ptr<object_t>>;

void draw(const document_t& x, ostream& out, size_t position)

{

out << string(position, ' ') << "<document>" << endl;
for (const auto& e : x) e->draw(out, position + 2);
out << string(position, ' ') << '"</document>" << endl;

( cout 1;uidelines“ defects ]



i ISR

class my_class_t : public object_t

{
public:

void draw(ostream& out, size_t position) const
{ out << string(position, ' ') << "my_class_t" << endl; }
/¥ ua X/

b

int main()

{
document t document;
document.emplace_back(new my_class_t());
draw(document, cout, 0);

¥

G TR e



Deep problem

Changed semantics of copy, assignment, and equality of my document
leads to incidental data structures

thread safety concerns

© 2013 Adobe Systems Incorporated. All Rights Reserved.




Semantics & Syntax

We define an operation in terms of the operation’s semantics:

“Assignment is a procedure taking two objects of the same type that makes the first object equal to the
second without modifying the second.”

© 2013 Adobe Systems Incorporated. All Rights Reserved.




Semantics & Syntax

shared_ptr<T> shared_ptr<T>

© 2013 Adobe Systems Incorporated. All Rights Reserved. 69 ' ‘
A

Adobe



Semantics & Syntax

shared_ptr<T> shared_ptr<T>

© 2013 Adobe Systems Incorporated. All Rights Reserved. 70 ' ‘
A

Adobe



Semantics & Syntax

Considered as individual types, assighnment and copy hold their regular semantic meanings

However, this fails to account for the relationships (the arrows) which form an incidental data-structure.
You cannot operate on T through one of the shared pointers without considering the effect on the other
shared pointer

© 2013 Adobe Systems Incorporated. All Rights Reserved.




Semantics & Syntax

shared_ptr<T> shared_ptr<T>

© 2013 Adobe Systems Incorporated. All Rights Reserved. 72 ' ‘
A

Adobe



Semantics & Syntax

If we extend our notion of object type to include the directly related part then we have intersecting objects
which will interfere with each other

© 2013 Adobe Systems Incorporated. All Rights Reserved.




Semantics & Syntax

shared_ptr<T> shared_ptr<T>

© 2013 Adobe Systems Incorporated. All Rights Reserved. 74 ' ‘
A

Adobe



Semantics & Syntax

When we consider the whole, the standard syntax for copy and assignment no longer have their regular
semantics.

This structure is still copyable and assignable but these operations must be done through other means

The shared structure also breaks our ability to reason locally about the code

A shared pointer is as good as a global variable

© 2013 Adobe Systems Incorporated. All Rights Reserved.




(e JIER)

class object_t {
public:
template <typename T> // T models Drawable
object_t(T x) : self_(make_shared<model<T>>(move(x)))
{1}
void draw(ostream& out, size_t position) const
{ self_->draw_(out, position); }

private:
struct concept_t {
virtual ~concept_t() = default;
virtual void draw_(ostream&, size t) const = 0;

};

template <typename T>

struct model : concept_t {
model(T x) : data (move(x)) { }
void draw_(ostream& out, size_t position) const
{ data_.draw(out, position); }

T data_;
b

shared_ptr<const concept_t> self_;

}s

( cout 1 guidelines“ defects ]




( client m

public:
template <typename T> // T models Drawable
object_t(T x) : self_(make_shared<model<T>>(move(x)))
{1}
void draw(ostream& out, size_t position) const
{ self_->draw_(out, position); }

private:
struct concept_t {
virtual ~concept_t() = default;
virtual void draw_(ostream&, size t) const = 0;

};

template <typename T>

struct model : concept_t {
model(T x) : data_(move(x)) { }
void draw_(ostream& out, size_t position) const
{ data_.draw(out, position); }

T data_;
s

shared_ptr<const concept_t> self_;

};

( cout 1 guidelines“ defects ]




(e JIER)

template <typename T> // T models Drawable
object_t(T x) : self_(make_shared<model<T>>(move(x)))
{1}

void draw(ostream& out, size_t position) const

{ self_->draw_(out, position); }

private:
struct concept_t {
virtual ~concept_t() = default;
virtual void draw_(ostream&, size t) const = 0;

};

template <typename T>

struct model : concept_t {
model(T x) : data (move(x)) { }
void draw_(ostream& out, size_t position) const
{ data_.draw(out, position); }

T data_;
¥}

shared_ptr<const concept_t> self_;

};

using document_t = vector<object_t>;

( cout 1 guidelines“ defects ]




(e [

object_t(T x) : self_(make_shared<model<T>>(move(x)))
{}

void draw(ostream& out, size_t position) const

{ self_->draw_(out, position); }

private:
struct concept_t {
virtual ~concept_t() = default;
virtual void draw_(ostream&, size t) const = 0;

};

template <typename T>

struct model : concept_t {
model(T x) : data (move(x)) { }
void draw_(ostream& out, size_t position) const
{ data_.draw(out, position); }

T data_;
b

shared_ptr<const concept_t> self_;

}s

using document_t = vector<object_t>;

( cout “guidelines“ defects ]




(e I

{1}
void draw(ostream& out, size_t position) const
{ self_->draw_(out, position); }

private:
struct concept_t {
virtual ~concept_t() = default;
virtual void draw_(ostream&, size t) const = 0;

};

template <typename T>

struct model : concept_t {
model(T x) : data_(move(x)) { }
void draw_(ostream& out, size_t position) const
{ data_.draw(out, position); }

T data_;
s

shared_ptr<const concept_t> self_;

};

using document_t

vector<object_t>;

void draw(const document_t& x, ostream& out, size_t position)

( cout “guidelines“ defects ]




(e I

void draw(ostream& out, size_t position) const
{ self_->draw_(out, position); }

private:
struct concept_t {
virtual ~concept_t() = default;
virtual void draw_(ostream&, size t) const = 0;

};

template <typename T>

struct model : concept_t {
model(T x) : data (move(x)) { }
void draw_(ostream& out, size_t position) const
{ data_.draw(out, position); }

T data_;
¥}

shared_ptr<const concept_t> self_;

b
using document_t = vector<object_t>;

void draw(const document_t& x, ostream& out, size_t position)

{

( cout “guidelines“ defects ]




(e TR

{ self_-—>draw_(out, position); }

private:
struct concept_t {
virtual ~concept_t() = default;
virtual void draw_(ostream&, size t) const = 0;

};

template <typename T>

struct model : concept_t {
model(T x) : data (move(x)) { }
void draw_(ostream& out, size_t position) const
{ data_.draw(out, position); }

T data_;
b

shared_ptr<const concept_t> self_;

}s

using document_t = vector<object_t>;

void draw(const document_t& x, ostream& out, size_t position)

{

out << string(position, ' ') << "<document>" << endl;

( cout “guidelines“ defects ]




( client m

private:
struct concept_t {
virtual ~concept_t() = default;
virtual void draw_(ostream&, size t) const = 0;

};

template <typename T>

struct model : concept_t {
model(T x) : data_(move(x)) { }
void draw_(ostream& out, size_t position) const
{ data_.draw(out, position); }

T data_;
s

shared_ptr<const concept_t> self_;

Fi
using document_t = vector<object_t>;
void draw(const document_t& x, ostream& out, size_t position)

{

out << string(position, ' ') << "<document>" << endl;
for (const auto& e : x) e.draw(out, position + 2);

( cout 1 guidelines“ defects ]




( client m

private:
struct concept_t {
virtual ~concept_t() = default;
virtual void draw_(ostream&, size t) const = 0;

};

template <typename T>

struct model : concept_t {
model(T x) : data (move(x)) { }
void draw_(ostream& out, size_t position) const
{ data_.draw(out, position); }

T data_;
¥}

shared_ptr<const concept_t> self_;

b
using document_t = vector<object_t>;

void draw(const document_t& x, ostream& out, size_t position)

{

out << string(position, ' ') << "<document>" << endl;
for (const auto& e : x) e.draw(out, position + 2);
out << string(position, ' ') << '"</document>" << endl;

( cout 1 guidelines“ defects ]



(e JIER)

struct concept_t {
virtual ~concept_t() = default;
virtual void draw_(ostream&, size t) const = 0;

};

template <typename T>

struct model : concept_t {
model(T x) : data (move(x)) { }
void draw_(ostream& out, size_t position) const
{ data_.draw(out, position); }

T data_;
b

shared_ptr<const concept_t> self_;

}s

using document_t

vector<object_t>;

void draw(const document_t& x, ostream& out, size_t position)

{

out << string(position, ' ') << "<document>" << endl;
for (const auto& e : x) e.draw(out, position + 2);
out << string(position, ' ') << '"</document>" << endl;

}

( cout 1 guidelines“ defects ]




i ISR

class my_class_t

{
public:
void draw(ostream& out, size_t position) const
{ out << string(position, ' ') << "my_class_t" << endl; }
b
int main()
{

document_t document;

document.emplace_back(my_class_t());

draw(document, cout, 0);




Seasoning

Using make_shared<> to create shared_ptrs eliminates an extra heap allocation

template <typename T> // T models Drawable
object_t(T x) : self_(make_shared<model<T>>(move(x)))

{1}
Pass sink arguments by value and move into place

Come to “Inheritance is the base class of Evil” talk for more on this topic

© 2013 Adobe Systems Incorporated. All Rights Reserved.




Goals Recap

No Raw Loops
No Raw Syntonization Primitives

No Raw Pointers

© 2013 Adobe Systems Incorporated. All Rights Reserved.




Locality of Reasoning

Easier to reason about
Composable

General

Correct

Efficient

© 2013 Adobe Systems Incorporated. All Rights Reserved. 89 ' ‘
A




A\

Adobe



No Raw Loops

template <typename I, // I models Bidirectionallterator X\\
typename S> // S models UnaryPredicate (;9(
auto gather(I f, I 1, I p, S s) — pair<I, I>
{
using value_type = typename iterator_traits<I>::value_type;
return { stable_partition(f, p, [&](const value_type& x){ return !s(x); }),

stable_partition(p, 1, s) };
}

notlis not lambda friendly because of the argument_type requirement
With C++ 14 we should be able to express this with a const auto& argument
Perhaps with a fixed not1 or !bind

The BidirectionalIlterator requirement should be weakened to ForwardIterator

See SGI STL for an implementation

The gather () function was developed with Marshall Clow as in Boost.

© 2013 Adobe Systems Incorporated. All Rights Reserved. 91




