
Bringing Together One ASP.NET

Overview

ASP.NET is a framework for building Web sites, apps and services using specialized

technologies such as MVC, Web API and others. With the expansion ASP.NET has seen since

its creation and the expressed need to have these technologies integrated, there have been recent

efforts in working towards One ASP.NET.

Visual Studio 2013 introduces a new unified project system which lets you build an application

and use all the ASP.NET technologies in one project. This feature eliminates the need to pick

one technology at the start of a project and stick with it, and instead encourages the use of

multiple ASP.NET frameworks within one project.

Objectives

In this hands-on lab, you will learn how to:

 Create a Web site based on the One ASP.NET project type

 Use different ASP.NET frameworks like MVC and Web API in the same project

 Identify the main components of an ASP.NET application

 Take advantage of the ASP.NET Scaffolding framework to automatically create

Controllers and Views to perform CRUD operations based on your model classes

 Expose the same set of information in machine- and human-readable formats using the

right tool for each job

Prerequisites

The following is required to complete this hands-on lab:

 Visual Studio Express 2013 for Web or greater

 Visual Studio 2013 Update 1

Setup

In order to run the exercises in this hands-on lab, you will need to set up your environment first.

1. Open Windows Explorer and browse to the lab's Source folder.

2. Right-click on Setup.cmd and select Run as administrator to launch the setup process

that will configure your environment and install the Visual Studio code snippets for this

lab.

3. If the User Account Control dialog box is shown, confirm the action to proceed.

http://www.microsoft.com/visualstudio/
http://go.microsoft.com/fwlink/?LinkId=301714

Note: Make sure you have checked all the dependencies for this lab before

running the setup.

Using the Code Snippets

Throughout the lab document, you will be instructed to insert code blocks. For your

convenience, most of this code is provided as Visual Studio Code Snippets, which you can

access from within Visual Studio 2013 to avoid having to add it manually.

Note: Each exercise is accompanied by a starting solution located in the Begin

folder of the exercise that allows you to follow each exercise independently of the

others. Please be aware that the code snippets that are added during an exercise

are missing from these starting solutions and may not work until you have

completed the exercise. Inside the source code for an exercise, you will also find

an End folder containing a Visual Studio solution with the code that results from

completing the steps in the corresponding exercise. You can use these solutions as

guidance if you need additional help as you work through this hands-on lab.

Exercises

This hands-on lab includes the following exercises:

1. Creating a New Web Forms Project

2. Creating an MVC Controller Using Scaffolding

3. Creating a Web API Controller Using Scaffolding

Estimated time to complete this lab: 60 minutes

Note: When you first start Visual Studio, you must select one of the predefined

settings collections. Each predefined collection is designed to match a particular

development style and determines window layouts, editor behavior, IntelliSense

code snippets, and dialog box options. The procedures in this lab describe the

actions necessary to accomplish a given task in Visual Studio when using the

General Development Settings collection. If you choose a different settings

collection for your development environment, there may be differences in the

steps that you should take into account.

Exercise 1: Creating a New Web Forms Project

In this exercise you will create a new Web Forms site in Visual Studio 2013 using the One

ASP.NET unified project experience, which will allow you to easily integrate Web Forms, MVC

and Web API components in the same application. You will then explore the generated solution

and identify its parts, and finally you will see the Web site in action.

file:///C:/WebCampsTK/HOL/BringingTogetherOneAspNet/HOL.htm%23Exercise1
file:///C:/WebCampsTK/HOL/BringingTogetherOneAspNet/HOL.htm%23Exercise2
file:///C:/WebCampsTK/HOL/BringingTogetherOneAspNet/HOL.htm%23Exercise3

Task 1 - Creating a New Site Using the One ASP.NET Experience

In this task you will start creating a new Web site in Visual Studio based on the One ASP.NET

project type. One ASP.NET unifies all ASP.NET technologies and gives you the option to mix

and match them as desired. You will then recognize the different components of Web Forms,

MVC and Web API that live side by side within your application.

1. Open Visual Studio Express 2013 for Web and select File | New Project... to start a

new solution.

Creating a New Project

2. In the New Project dialog box, select ASP.NET Web Application under the Visual C# |

Web tab, and make sure .NET Framework 4.5 is selected. Name the project

MyHybridSite, choose a Location and click OK.

Creating a new ASP.NET Web Application project

3. In the New ASP.NET Project dialog box, select the Web Forms template and select the

MVC and Web API options. Also, make sure that the Authentication option is set to

Individual User Accounts. Click OK to continue.

Creating a new project with the Web Forms template, including Web API and MVC

components

4. You can now explore the structure of the generated solution.

Exploring the generated solution

1. Account: This folder contains the Web Form pages to register, log in to and

manage the application's user accounts. This folder is added when the Individual

User Accounts authentication option is selected during the configuration of the

Web Forms project template.

2. Models: This folder will contain the classes that represent your application data.

3. Controllers and Views: These folders are required for the ASP.NET MVC and

ASP.NET Web API components. You will explore the MVC and Web API

technologies in the next exercises.

4. The Default.aspx, Contact.aspx and About.aspx files are pre-defined Web Form

pages that you can use as starting points to build the pages specific to your

application. The programming logic of those files resides in a separate file

referred to as the "code-behind" file, which has an ".aspx.vb" or ".aspx.cs"

extension (depending on the language used). The code-behind logic runs on the

server and dynamically produces the HTML output for your page.

5. The Site.Master and Site.Mobile.Master pages define the look and feel and the

standard behavior of all the pages in the application.

5. Double-click the Default.aspx file to explore the content of the page.

Exploring the Default.aspx page

Note: The Page directive at the top of the file defines the attributes of the

Web Forms page. For example, the MasterPageFile attribute specifies the

path to the master page -in this case, the Site.Master page- and the

Inherits attribute defines the code-behind class for the page to inherit.

This class is located in the file determined by the CodeBehind attribute.

The asp:Content control holds the actual content of the page (text,

markup and controls) and is mapped to a asp:ContentPlaceHolder

control on the master page. In this case, the page content will be rendered

inside the MainContent control defined in the Site.Master page.

6. Expand the App_Start folder and notice the WebApiConfig.cs file. Visual Studio

included that file in the generated solution because you included Web API when

configuring your project with the One ASP.NET template.

7. Open the WebApiConfig.cs file. In the WebApiConfig class you will find the

configuration associated with Web API, which maps HTTP routes to Web API

controllers.

public static void Register(HttpConfiguration config)

{

 // Web API configuration and services

 // Web API routes

 config.MapHttpAttributeRoutes();

 config.Routes.MapHttpRoute(

 name: "DefaultApi",

 routeTemplate: "api/{controller}/{id}",

 defaults: new { id = RouteParameter.Optional }

);

}

8. Open the RouteConfig.cs file. Inside the RegisterRoutes method you will find the

configuration associated with MVC, which maps HTTP routes to MVC controllers.

public static void RegisterRoutes(RouteCollection routes)

{

 var settings = new FriendlyUrlSettings();

 settings.AutoRedirectMode = RedirectMode.Permanent;

 routes.EnableFriendlyUrls(settings);

 routes.IgnoreRoute("{resource}.axd/{*pathInfo}");

 routes.MapRoute(

 name: "Default",

 url: "{controller}/{action}/{id}",

 defaults: new { action = "Index", id =

UrlParameter.Optional }

);

}

Task 2 - Running the Solution

In this task you will run the generated solution, explore the app and some of its features, like

URL rewriting and built-in authentication.

1. To run the solution, press F5 or click the Start button located on the toolbar. The

application home page should open in the browser.

2. Verify that the Web Forms pages are being invoked. To do this, append /contact.aspx to

the URL in the address bar and press Enter.

Friendly URLs

Note: As you can see, the URL changes to /contact. Starting from

ASP.NET 4, URL routing capabilities were added to Web Forms, so you

can write URLs like http://www.mysite.com/products/software instead of

http://www.mysite.com/products.aspx?category=software. For more

information refer to URL Routing.

3. You will now explore the authentication flow integrated into the application. To do this,

click Register in the upper-right corner of the page.

Registering a new user

4. In the Register page, enter a User name and Password, and then click Register.

http://www.mysite.com/products/software
http://www.mysite.com/products.aspx?category=software
http://www.asp.net/web-forms/tutorials/aspnet-45/getting-started-with-aspnet-45-web-forms/url-routing

Register page

5. The application registers the new account, and the user is authenticated.

User authenticated

6. Go back to Visual Studio and press SHIFT + F5 to stop debugging.

Exercise 2: Creating an MVC Controller Using Scaffolding

In this exercise you will take advantage of the ASP.NET Scaffolding framework provided by

Visual Studio to create an ASP.NET MVC 5 controller with actions and Razor views to perform

CRUD operations, without writing a single line of code. The scaffolding process will use Entity

Framework Code First to generate the data context and the database schema in the SQL database.

About Entity Framework Code First

Entity Framework (EF) is an object-relational mapper (ORM) that enables you to create data

access applications by programming with a conceptual application model instead of

programming directly using a relational storage schema.

The Entity Framework Code First modeling workflow allows you to use your own domain

classes to represent the model that EF relies on when performing querying, change-tracking and

updating functions. Using the Code First development workflow, you do not need to begin your

application by creating a database or specifying a schema. Instead, you can write standard .NET

classes that define the most appropriate domain model objects for your application, and Entity

Framework will create the database for you.

Note: You can learn more about Entity Framework here.

Task 1 - Creating a New Model

You will now define a Person class, which will be the model used by the scaffolding process to

create the MVC controller and the views. You will start by creating a Person model class, and

the CRUD operations in the controller will be automatically created using scaffolding features.

1. Open Visual Studio Express 2013 for Web and the MyHybridSite.sln solution located

in the Source/Ex2-MvcScaffolding/Begin folder. Alternatively, you can continue with

the solution that you obtained in the previous exercise.

2. In Solution Explorer, right-click the Models folder of the MyHybridSite project and

select Add | Class....

http://www.asp.net/entity-framework

Adding the Person model class

3. In the Add New Item dialog box, name the file Person.cs and click Add.

Creating the Person model class

4. Replace the content of the Person.cs file with the following code. Press CTRL + S to

save the changes.

(Code Snippet - BringingTogetherOneAspNet - Ex2 - PersonClass)

namespace MyHybridSite.Models

{

 public class Person

 {

 public int Id { get; set; }

 public string Name { get; set; }

 public int Age { get; set; }

 }

}

5. In Solution Explorer, right-click the MyHybridSite project and select Build, or press

CTRL + SHIFT + B to build the project.

Task 2 - Creating an MVC Controller

Now that the Person model is created, you will use ASP.NET MVC scaffolding with Entity

Framework to create the CRUD controller actions and views for Person.

1. In Solution Explorer, right-click the Controllers folder of the MyHybridSite project

and select Add | New Scaffolded Item....

Creating a new Scaffolded Controller

2. In the Add Scaffold dialog box, select MVC 5 Controller with views, using Entity

Framework and then click Add.

Selecting MVC 5 Controller with views and Entity Framework

3. Set MvcPersonController as the Controller name, select the Use async controller

actions option and select Person (MyHybridSite.Models) as the Model class.

Adding an MVC controller with scaffolding

4. Under Data context class, click New data context....

Creating a new data context

5. In the New Data Context dialog box, name the new data context PersonContext and

click Add.

Creating the new PersonContext type

6. Click Add to create the new controller for Person with scaffolding. Visual Studio will

then generate the controller actions, the Person data context and the Razor views.

After creating the MVC controller with scaffolding

7. Open the MvcPersonController.cs file in the Controllers folder. Notice that the CRUD

action methods have been generated automatically.

...

// POST: /MvcPerson/Create

// To protect from overposting attacks, please enable the specific

properties you want to bind to, for

// more details see http://go.microsoft.com/fwlink/?LinkId=317598.

[HttpPost]

[ValidateAntiForgeryToken]

public async Task<ActionResult> Create([Bind(Include="Id,Name,Age")]

Person person)

{

 if (ModelState.IsValid)

 {

 db.People.Add(person);

 await db.SaveChangesAsync();

 return RedirectToAction("Index");

 }

 return View(person);

}

// GET: /MvcPerson/Edit/5

public async Task<ActionResult> Edit(int? id)

{

 if (id == null)

 {

 return new HttpStatusCodeResult(HttpStatusCode.BadRequest);

 }

 Person person = await db.People.FindAsync(id);

 if (person == null)

 {

 return HttpNotFound();

 }

 return View(person);

}

...

Note: By selecting the Use async controller actions check box from the

scaffolding options in the previous steps, Visual Studio generates

asynchronous action methods for all actions that involve access to the

Person data context. It is recommended that you use asynchronous action

methods for long-running, non-CPU bound requests to avoid blocking the

Web server from performing work while the request is being processed.

Task 3 - Running the Solution

In this task, you will run the solution again to verify that the views for Person are working as

expected. You will add a new person to verify that it is successfully saved to the database.

1. Press F5 to run the solution.

2. Navigate to /MvcPerson. The scaffolded view that shows the list of people should

appear.

3. Click Create New to add a new person.

Navigating to the scaffolded MVC views

4. In the Create view, provide a Name and an Age for the person, and click Create.

Adding a new person

5. The new person is added to the list. In the element list, click Details to display the

person's details view. Then, in the Details view, click Back to List to go back to the list

view.

Person's details view

6. Click the Delete link to delete the person. In the Delete view, click Delete to confirm the

operation.

Deleting a person

7. Go back to Visual Studio and press SHIFT + F5 to stop debugging.

Exercise 3: Creating a Web API Controller Using Scaffolding

The Web API framework is part of the ASP.NET Stack and designed to make implementing

HTTP services easier, generally sending and receiving JSON- or XML-formatted data through a

RESTful API.

In this exercise, you will use ASP.NET Scaffolding again to generate a Web API controller. You

will use the same Person and PersonContext classes from the previous exercise to provide the

same person data in JSON format. You will see how you can expose the same resources in

different ways within the same ASP.NET application.

Task 1 - Creating a Web API Controller

In this task you will create a new Web API Controller that will expose the person data in a

machine-consumable format like JSON.

1. If not already opened, open Visual Studio Express 2013 for Web and open the

MyHybridSite.sln solution located in the Source/Ex3-WebAPI/Begin folder.

Alternatively, you can continue with the solution that you obtained in the previous

exercise.

Note: If you start with the Begin solution from Exercise 3, press CTRL +

SHIFT + B to build the solution.

2. In Solution Explorer, right-click the Controllers folder of the MyHybridSite project

and select Add | New Scaffolded Item....

Creating a new scaffolded Controller

3. In the Add Scaffold dialog box, select Web API in the left pane, then Web API 2

Controller with actions, using Entity Framework in the middle pane and then click

Add.

Selecting Web API 2 Controller with actions and Entity Framework

4. Set ApiPersonController as the Controller name, select the Use async controller

actions option and select Person (MyHybridSite.Models) and PersonContext

(MyHybridSite.Models) as the Model and Data context classes respectively. Then click

Add.

Adding a Web API controller with scaffolding

5. Visual Studio will then generate the ApiPersonController class with the four CRUD

actions to work with your data.

After creating the Web API controller with scaffolding

6. Open the ApiPersonController.cs file and inspect the GetPeople action method. This

method queries the db field of PersonContext type in order to get the people data.

// GET api/ApiPerson

public IQueryable<Person> GetPeople()

{

 return db.People;

}

7. Now notice the comment above the method definition. It provides the URI that exposes

this action which you will use in the next task.

// GET api/ApiPerson

public IQueryable<Person> GetPeople()

{

 return db.People;

}

Note: By default, Web API is configured to catch the queries to the /api

path to avoid collisions with MVC controllers. If you need to change this

setting, refer to Routing in ASP.NET Web API.

Task 2 - Running the Solution

In this task you will use the Internet Explorer F12 developer tools to inspect the full response

from the Web API controller. You will see how you can capture network traffic to get more

insight into your application data.

http://www.asp.net/web-api/overview/web-api-routing-and-actions/routing-in-aspnet-web-api

Note: Make sure that Internet Explorer is selected in the Start button located on

the Visual Studio toolbar.

The F12 developer tools have a wide set of functionality that is not covered in

this hands-on-lab. If you want to learn more about it, refer to Using the F12

developer tools.

1. Press F5 to run the solution.

Note: In order to follow this task correctly, your application needs to have

data. If your database is empty, you can go back to Task 3 in Exercise 2

and follow the steps on how to create a new person using the MVC views.

2. In the browser, press F12 to open the Developer Tools panel. Press CTRL + 4 or click

the Network icon, and then click the green arrow button to begin capturing network

traffic.

Initiating Web API network capture

http://msdn.microsoft.com/library/ie/bg182326(v=vs.85)
http://msdn.microsoft.com/library/ie/bg182326(v=vs.85)

3. Append api/ApiPerson to the URL in the browser's address bar. You will now inspect

the details of the response from the ApiPersonController.

Retrieving person data through Web API

Note: Once the download finishes, you will be prompted to make an

action with the downloaded file. Leave the dialog box open in order to be

able to watch the response content through the Developers Tool window.

4. Now you will inspect the body of the response. To do this, click the Details tab and then

click Response body. You can check that the downloaded data is a list of objects with

the properties Id, Name and Age that correspond to the Person class.

Viewing Web API Response Body

Task 3 - Adding Web API Help Pages

When you create a Web API, it is useful to create a help page so that other developers will know

how to call your API. You could create and update the documentation pages manually, but it is

better to auto-generate them to avoid having to do maintenance work. In this task you will use a

Nuget package to automatically generate Web API help pages to the solution.

1. From the Tools menu in Visual Studio, select Library Package Manager, and then click

Package Manager Console.

2. In the Package Manager Console window, execute the following command:

Install-Package Microsoft.AspNet.WebApi.HelpPage

Note: The Microsoft.AspNet.WebApi.HelpPage package installs the

necessary assemblies and adds MVC Views for the help pages under the

Areas/HelpPage folder.

HelpPage Area

3. By default, the help pages have placeholder strings for documentation. You can use XML

documentation comments to create the documentation. To enable this feature, open the

HelpPageConfig.cs file located in the Areas/HelpPage/App_Start folder and

uncomment the following line:

config.SetDocumentationProvider(new

XmlDocumentationProvider(HttpContext.Current.Server.MapPath("~/App_Data

/XmlDocument.xml")));

4. In Solution Explorer, right-click the project MyHybridSite, select Properties and click

the Build tab.

Build tab

5. Under Output, select XML documentation file. In the edit box, type

App_Data/XmlDocument.xml.

Output section in Build tab

6. Press CTRL + S to save the changes.

7. Open the ApiPersonController.cs file from the Controllers folder.

8. Enter a new line between the GetPeople method signature and the // GET api/ApiPerson

comment, and then type three forward slashes.

Note: Visual Studio automatically inserts the XML elements which define

the method documentation.

9. Add a summary text and the return value for the GetPeople method. It should look like

the following.

// GET api/ApiPerson

/// <summary>

/// Documentation for 'GET' method

/// </summary>

/// <returns>Returns a list of people in the requested format</returns>

public IQueryable<Person> GetPeople()

{

 return db.People;

}

10. Press F5 to run the solution.

11. Append /help to the URL in the address bar to browse to the help page.

ASP.NET Web API Help Page

Note: The main content of the page is a table of APIs, grouped by

controller. The table entries are generated dynamically, using the

IApiExplorer interface. If you add or update an API controller, the table

will be automatically updated the next time you build the application.

The API column lists the HTTP method and relative URI. The

Description column contains information that has been extracted from the

method's documentation.

12. Note that the description you added above the method definition is displayed in the

description column.

API method description

13. Click one of the API methods to navigate to a page with more detailed information,

including sample response bodies.

Detailed information page

Summary

By completing this hands-on lab you have learned how to:

 Create a new Web application using the One ASP.NET Experience in Visual Studio 2013

 Integrate multiple ASP.NET technologies into one single project

 Generate MVC controllers and views from your model classes using ASP.NET

Scaffolding

 Generate Web API controllers, which use features such as Async Programming and data

access through Entity Framework

 Automatically generate Web API Help Pages for your controllers

