

Exploring SQL

Server Data

Tools in Visual

Studio 2013

Exploring SQL Server Data Tools in Visual Studio 2013

Contents

Azure account required for last exercise 3

Optimized productivity– One set of tools for

everything ... 3

Using SSIS project to export a table to a flat file 4

Managing and developing schemas............................18

Source code control using Git Remote Repository . 30

Publish project to Azure SQL Database 60

Roll back Azure changes ... 67

Terms of use ... 68

Exploring SQL Server Data Tools in Visual Studio 2013 3

Estimated time to complete lab is 60 minutes

To perform the last exercise of this lab where you will publish a

database project to a Microsoft Azure SQL Database, you will require a

Microsoft Azure account.

If you do not have an Azure account, you can request a free trial

version by going to http://azure.microsoft.com/en-us/pricing/free-

trial/.

Within the one-month trial version, you can perform other SQL Server

2014 hands on labs along with other tutorials available on Azure.

Note, to sign up for a free trial, you will need a mobile device that can

receive text messages and a valid credit card.

You can still perform this hands on lab without an Azure account with

the exception of the last exercise.

Be sure to follow the Roll Back Azure changes section at the end of this

exercise after creating the Azure database so that you can make the

most use of your $200 free Azure credit.

As organizations are focused on becoming more effective, doing more

with the same amount or less resource and striving to become more

agile in deploying and improving applications, it becomes important to

manage the skills and future skills requirements of your staff or to

provision new tools. Unfortunately both these options can require a

significant amount of continuing investment, as well as a delay in

realizing that investment as people get up to speed and practiced in

deploying the tools they have been given or the skills they have been

taught. Improvements in the integration between the traditional SQL

Server Management Studio capabilities and Visual Studio mean that

organizations can now work with familiar toolsets and environments

but allow DBAs to reduce the time required to modify, test and publish

solutions within or across different versions of SQL server, as well as

improve on best practice by storing all the database components in

source safe allowing for version control and auditing. This means

organizations can achieve a significant increase in efficiency without

having to invest in tools or training and minimize their time to their

realization of this efficiency gain.

Azure
account
required for
last exercise

Optimized
productivity–
One set of
tools for
everything

http://azure.microsoft.com/en-us/pricing/free-trial/
http://azure.microsoft.com/en-us/pricing/free-trial/

Exploring SQL Server Data Tools in Visual Studio 2013 4

The new release of the SQL Server Data Tools to support SQL Server

2014 enables you to support both database and business intelligence

projects. From the BI standpoint, this will provide you with a tool to

manage SSAS and SSRS project for SQL Server versions 2014 and lower

and SSIS for SQL 2014 only. When looking at databases, the full

integration with the Visual Studio SKUs allows you to provide end-to-

end support for building and managing Windows Azure SQL

Databases and SQL Server databases. In this lab, you will run and

explore this tool.

NOTE: SQL Server Data Tools has been split into two products – SSDT

and SSDTBI. SSDT is for working with database projects and is a stand-

alone tool if Visual Studio is not installed. Comparatively, SSDTBI is for

business intelligence project (SSAS, SSIS, SSRS.) Both are installed pn the

lab environment,, so now can work with database project, BI projects,

and development projects from the one interface of Visual Studio 2013.

Here, you will be exploring the BI capabilities, and will use the database

capabilities in the next scenario.

Connect to SQLONE computer

1. Click on SQLONE button on right side of the screen to connect

to the SQLONE computer. If you see the following in the lower

right corner of the screen, you can jump to step 5 below to set

your screen resolution.

2. Click Send Ctrl-Alt-Del for SQLONE computer and then click

Switch user.

3. Click Send Ctrl-Alt-Del for SQLONE computer again and then

click Other user.

Using SSIS
project to
export a
table to a
flat file

Exploring SQL Server Data Tools in Visual Studio 2013 5

4. Log on to SQLONE computer as labuser with password

pass@word1

Note, if you have a monitor that supports a larger screen resolution than

1024 x 768, you can change the screen resolution for the lab to go as

high as 1920 x 1080. By going to a higher screen resolution, it will be

easier to use SQL Server Management Studio.

5. Right click on the desktop and click on Screen resolution.

6. Select 1366 x 786 (a good minimum screen size for using

SSMS) and click OK.

7. Click Keep Changes.

8. Resize the client holLaunchPad Online window for the lab to

fit your screen resolution.

Create an SSIS project

1. Open SQL Server Data Tools for Visual Studio 2013 from the

start screen

2. On the File menu, click New > Project

3. In the New Project wizard, select the Business Intelligence

template type (in the left hand pane) then select an

Integration Services Project (in the center pane.)

4. Enter ContosoRetailDWPackage as the name for the project

Note how the solution name automatically changes as you change the

solution name

Exploring SQL Server Data Tools in Visual Studio 2013 6

5. Select the location of the project as C:\SQLPROGRAMS\E4

6. Ensure Create a directory for the solution is checked and

Add to source control is not

You will be exploring source control later in this story

7. Click OK to create the project

Create an SSIS connection to ControlsRetailDW

1. Right-click in the Connection Managers pane at the window

bottom and select New OLE DB Connection…

Exploring SQL Server Data Tools in Visual Studio 2013 7

2. In the popup box, click New…

3. Enter SQLONE as the Server name, select Use Windows

Authentication, and select ContosoRetailDW as the database

Exploring SQL Server Data Tools in Visual Studio 2013 8

4. Click OK to create the data source, then OK to create the

connection manager

Exploring SQL Server Data Tools in Visual Studio 2013 9

Add a data flow task

1. Drag a Data Flow Task control from the SSIS Toolbox onto

the central pane

2. Double-click on the newly-created Data Flow Task in the

central pane. This opens the Data Flow task

3. Drag an OLE DB Source control from the SSIS Toolbox (under

Other Sources) onto the central pane

Exploring SQL Server Data Tools in Visual Studio 2013 10

4. Click once on the text OLE DB Source of the new control, type

DimProduct Source and press ENTER to change the control

name

Select the table to use as the source

1. Double-click on the DimProduct Source control to open its

editor

2. The OLE DB connection manager property will automatically be

assigned to the SQLONE connection manager you created

earlier

3. Select DimProduct from the Name of the table or the view

dropdown box, then click OK.

Exploring SQL Server Data Tools in Visual Studio 2013 11

Add a destination and connect it to the data source

1. Drag a Flat File Destination control from the SSIS Toolbox

(under Other Destinations) onto the central pane

2. Click on DimProduct Source again

3. Once the blue arrow coming out the bottom of the

DimProduct Source is visible, drag it so the bottom end is on

top of the Flat File Destination control

Exploring SQL Server Data Tools in Visual Studio 2013 12

4. Double click on the Flat File Destination control to open its

editor

5. In the editor, click New… next to the Flat File connection

manager dropdown box

6. Select Delimited as the Flat File Format and click OK

Exploring SQL Server Data Tools in Visual Studio 2013 13

7. Click on Browse next to the File name box to select a file.

8. In the Open dialog, navigate to C:\SQLFILES, enter SSISTest as

the file name, and then click Open to choose the new file.

Exploring SQL Server Data Tools in Visual Studio 2013 14

9. Look at Columns tab in the left to see what columns the new

flat file will have

Exploring SQL Server Data Tools in Visual Studio 2013 15

10. Click OK to create the connection manager

11. Go to the Mappings page of the Flat File Destination Editor

window, and note that all columns in the Available Input

Columns box have a line going from them to a column of the

same name in the Available Destinations columns

Exploring SQL Server Data Tools in Visual Studio 2013 16

12. Click OK

Run the package in debug mode

1. Click Start icon in the command bar at the window top

2. Watch the green tick appear on DimProduct Source and then

on Flat File Destination showing the source and destination

were both successful

Exploring SQL Server Data Tools in Visual Studio 2013 17

3. Once the package execution has completed with success, open

File Explorer, navigate to C:\SQLFILES, and open SSISTest.txt.

You should see all the data from DimProduct in this text file.

4. Click on the stop icon in the command bar at the window

top

5. Close SQL Server Development Tools for Visual Studio 2013

after saving the project

You just learned how to create an SSIS project from within Visual

Studio 2013 to copy data from one of his database tables into a text

file.

Exploring SQL Server Data Tools in Visual Studio 2013 18

Visual Studio 2013 provides an integrated toolset for utilizing BI and

database capability. It allows user to reverse engineer database

solution from actual database and provides the ability to maintain and

manage various versions of the database

In this exercise, you will use SQL Server Development Tools for Visual

Studio 2013 to explore the tools to ensure that you can access,

configure and run the components that relate to DBA development

tasks. You will begin by looking into managing and developing

schemas.

SQL Server Development Tools for Visual Studio 2013 provides a rich

development environment outside of SQL Server Management studio

that allows you to take advantage of a number of features that could

improve the performance of the DBA team when making changes to

schemas and tables. The capabilities offered by SQL Server Data Tools

will allow you to do this.

Initial Cleanup

In Windows Explorer navigate to C:\SQLPROGRAMS\E4.

Delete the ContosoRetailProj folder.

Connect to a SQL 2014 Database from Visual Studio 2013

1. Open SQL Server Development Tools for Visual Studio 2013

from Windows Start

2. Select SQL Server Object Explorer from View menu

3. In the SQL Server Object Explorer, right click on SQL Server

and select Add SQL Server... option. Alternatively, click on

Add SQL Server icon available on the SQL Server Object

Explorer tab.

4. Enter SQLONE as the Server name

5. Select Windows Authentication

Managing
and
developing
schemas

Exploring SQL Server Data Tools in Visual Studio 2013 19

6. Click on Connect

7. In the SQL Server Object Explorer, a node for SQLONE will

now appear under the SQL Server node. Expand this node,

then expand Databases folder to view all databases available in

SQL Server 2014

Create a project from the ContosoRetailExportable database

1. Right click on ContosoRetailExportable and select Create

New project...

Exploring SQL Server Data Tools in Visual Studio 2013 20

2. In the Create New Project – Import Database wizard, change

the Target project name to be ContosoRetailProj and the

location to read C:\SQLPROGRAMS\E4, ensure Create new

solution and Create directory for solution are both ticked,

and Add to source control is not.

3. In the Import Settings section, check all the options listed

4. Click Start to create the project. Click OK to overwrite if the

message box appears.

5. Progress and summary of the import is shown as the last step.

Note, it may take some time to enter the Summary page.

Exploring SQL Server Data Tools in Visual Studio 2013 21

6. Click on Finish to exit the wizard

7. Click View -> Solution Explorer and expand the dbo and

Tables folders.

Exploring SQL Server Data Tools in Visual Studio 2013 22

NOTE: The database objects are grouped by the Schema, so all objects in

this database will be grouped under dbo

Browse and modify tables in Design Mode:

SQL Server Data Tools uses a local copy of the database, so any changes

you make to the tables will not affect the underlying, live databases until

you publish them.

1. In the Solution Explorer, right-click on the Dim Currency.sql

table and select View Designer to view the table schema in the

table designer.

Exploring SQL Server Data Tools in Visual Studio 2013 23

Alternatively, you can double click on table to open the table in design

mode.

2. Check the Allow Nulls box for CurrencyLabel column. Notice

how the corresponding code in the script pane is changed to

NULL immediately.

3. Similarly, any change to the T-SQL will be reflected in the

designer

Design Mode allows for complicated and involved changes to be made

intuitively, as any effects of the change are visible immediately.

4. Save the change by clicking on Save icon from the toolbar.

Exploring SQL Server Data Tools in Visual Studio 2013 24

Change to a database object automatically updates related items

in the model

The Dim_Currency table is referenced by Fact_OnlineSales via a

foreign key on the CurrencyKey column. In this example, you will see

how SSDT refactors the model when changing the primary key column

name in the Dim_Currency table.

1. Go to the Dim Currencty.sql [Design] editor and select the

CurrencyKey column in the table by clicking on the row

selector.

2. SQL -> Refactor -> Rename

3. Rename [CurrencyKey] to [CurrencyId] by selecting the value

in the design view, changing it, and pressing OK.

4. The Preview Changes – Rename dialog allows you to see the

impact of the column rename operation.

Exploring SQL Server Data Tools in Visual Studio 2013 25

5. After examining the changes, click Apply.

6. Notice that SSDT added a ContosoRetailProj.refactorlog to

the project in the Solution Explorer.

Exploring SQL Server Data Tools in Visual Studio 2013 26

7. Single-click on the ContosoRetailProj.refactorlog file to view

its contents.

8. Save the changes made to the table by clicking on Save

icon from the tool bar. Alternatively, right click on the current

tab and select Save table option.

9. From the Solution Explorer pane, double click on

FactOnlineSales.sql

10. In the T-SQL pane in the central pane, scroll down to note that

the foreign key in the table definition now refers to CurrencyId

rather than CurrencyKey – this change happened

automatically when you changed the DimCurrency table.

Exploring SQL Server Data Tools in Visual Studio 2013 27

This makes it extremely simple to make complex and involved changes

to the model. This allows you to use some of the very useful features of

Visual Studio Integrated toolset, extract the database to create

solutions using the database, which can be added to version control,

and also opens a whole world of options for you to develop, manage

and deploy the database to various environments.

Deploy changes to a local sandbox database

You can see how your changes affect the database and if they cause

any errors without deploying the changes to the main database

running on SQLONE. You will deploy to the sandbox copy of the

database that Visual Studio made when importing the SQLONE

database into the project.

1. Right click on the project ContosoRetailProj from the

Solution Explorer pane and click on Build to make sure there

are no errors/issue in the project

Exploring SQL Server Data Tools in Visual Studio 2013 28

2. If there are any build errors, correct the errors before

proceeding

3. Click on Start icon from the toolbar

This deploys the changes to a local sandbox database

(localdb)\ProjectsV12 which can be located under SQL Server node in

the SQL server Object Explorer pane

4. Expand the Databases node under the (localdb)\ProjectsV12

5. Right click on the ContosoRetailProj node and click Refresh

Exploring SQL Server Data Tools in Visual Studio 2013 29

6. Expand FactOnlineSales and then expand Keys

7. Click on FK_FactOnlineSales_DimCurrency. Note how the

properties for this foreign key relationship is shown in the

Properties window on the right. Note the Referenced Key

Columns to see how it has changed to CurrencyID reflecting

the changes made in the refactor operation.

8. If you want to see the code change for the key, go back to the

SQL Server Object Explorer and double-click on the

FK_FactOnlineSales_DimCurrency key.

Notice that SSDT highlights the line of code in the editor that defines the

foreign key constraint.

Exploring SQL Server Data Tools in Visual Studio 2013 30

9. Exit Visual Studio 2013 after saving the project

Above stated feature allows you to work on a local isolated copy of the

database to create, test and deploy the changes before affecting a live

environment. He can later deploy these changes back to the production

database, if he desires.

You can see how using the SQL Server Data Tools and their increased

integration and functionality with Visual Studio, the DBA’s can save time

and effort when changing schemas and administering the database. The

ability to be able to review the changes and save the scripts that are

generated will also save time and rework if he wants to deploy them into

a live environment knowing that he has already been able to test the

changes on a local copy knowing that the changes will work.

DBA’s can benefit from having a more robust change, development

and code repository to use when altering the databases, much in the

same way developers do when writing code. By taking advantage of

the integration between SQL Server and Visual Studio as well as the

functionality and benefits offered by Team Foundation Server

(TFS)/Git, You can now version and snapshot all the changes to the

database as well as script changes, and store these in a source safe

repository. Once you have your changes committed and the code

saved, you will use SQL Server Data Tools to publish the new database

back to SQL 2014 Server.

SQL Server Data Tools to allow you to adjust the target of where you

wish to publish the data to. This is particularly useful when moving

databases from different versions of SQL Server up to Windows Azure

or if people in the team have made changes to the database that aren’t

compatible with Windows Azure. You can use this tool to quickly test

and correct other people’s modifications as required as you deploy to

other platforms.

Create the Repository

Source code
control using
Git Remote
Repository

Exploring SQL Server Data Tools in Visual Studio 2013 31

You will use Git version control (an open-source form of version control

more focused on flexibility.) Once you have completed this step, use

that form of version control throughout the scenario.

Setting up Git Remote Repository

1. Right click on the PowerShell icon on the toolbar and click

Run ISE as Administrator. Click Yes for the User Access

Control dialog.

2. Press Ctrl+O to open a file, navigate to C:\SQLSCRIPTS\E4\

and select the script E4D-3#1-Remove existing Git remote

repository.ps1. Click Open.

This script deletes the existing Git remote repository

3. Press F5 to execute the statement.

4. Press Ctrl+O and select the script E4D-3#2-Create Git remote

repository.ps1’ and press Open.

This creates and initializes the Git remote repository at

C:\SQLPROGRAMS\E4\GitRemote. Note, a Git remote repository can

also be hosted online at Github.com, rather than on your local machine

as is being shown here.

Exploring SQL Server Data Tools in Visual Studio 2013 32

5. Press F5 to execute the script.

6. Close the Windows PowerShell ISE program.

Checking a database project into source control server

Git allows version controlling and shared access to the database

project. To add your project solution to a version control server, follow

the steps below:

1. Open Visual Studio 2013

2. Press Ctrl+Shift_O to open a Project/Solution

3. From the Open Project window double click

ContosoRetailProj folder, select the file

ContosoRetailProj.sln then click Open. This will open

the Solution Explorer as a pane on the right hand side.

If not then from the View menu, select Solution Explorer

4. On the File menu, click Add to Source Control. Alternatively,

right click on the project solution and click on (Source Control

Exploring SQL Server Data Tools in Visual Studio 2013 33

>) Add Solution to Source Control. (The bracketed sections

will only be present if you are using a TFS server.)

5. Choose Source control dialog appears

6. Select one of the Git option and click on OK

NOTE: Team Foundation Version Control option uses a single

centralized server repository to track and version files. Local changes are

always checked in to the central server where other developers latest

changes. Git option could be used to enable distributed version control

system that uses a local repository to track and version files. Changes

are shared with other developers by pulling changes through a remote,

shared repository.

7. Go to Solution Explorer pane

Exploring SQL Server Data Tools in Visual Studio 2013 34

8. Right click on the solution and click on Commit… icon (may

be within Source Control menu)

9. The Team Explorer – Changes pane will be displayed, the list

of changes are listed

Exploring SQL Server Data Tools in Visual Studio 2013 35

NOTE: If “Configure your user name and email address before

committing changes” message is shown on top of the Team Explorer –

Changes pane, click on Configure link in the message. Provide your user

name, email address and click on Update.

Commit changes

1. Review the list of changes and type a commit message (e.g.

Original Version) to help while trying to retrieve a version of

code at a later point of time

Exploring SQL Server Data Tools in Visual Studio 2013 36

2. Click Commit

NOTE: Committing the project stores the new version on your local

machine until you push it onto the server

3. Click on Sync link from the message on the top of the Team

Explorer bar

4. Provide the Git URL as C:\SQLPROGRAMS\E4\GitRemote and

click on Publish

Exploring SQL Server Data Tools in Visual Studio 2013 37

In the Team Explorer a message will be displayed to inform you that

the origin remote has been created a current branch has been published

If you need to sync the local branch with the remote branch master click

on the Sync button.

In the Team Explorer a message will then be displayed to confirm that

commits have been synchronized.

Exploring SQL Server Data Tools in Visual Studio 2013 38

Retrieve/Pull committed changes from Git

Git is designed for collaborative work across a team, so this option is to

get work committed by other team members.

1. Ensure that Team Explorer is open at the Unsynced Commits

view.

If it is not already then click on the Home icon then click on

Unsynched Commits

Exploring SQL Server Data Tools in Visual Studio 2013 39

2. If this project had another team member who had committed

work since you last updated your local repository, their recent

commits would be listed under Incoming Commits. You

would select the commit you wanted to look at and click fetch

(to preview the effect of the changes before integrating them

into your work) or pull (to merge the commit with your local

version.)

Modify Database Objects and check-in

1. Open Solution Explorer to view all the SQL objects available in

the project

2. Expand the project node, followed by dbo and Tables node

3. Double-click on DimCurrency.sql to open it in design mode

4. Add a new non null [IsActive] column of type [Bit] and default it

to have a value of 1. You can either do this by clicking in the

Exploring SQL Server Data Tools in Visual Studio 2013 40

blank line under CurrencyDescription in the design section

and entering the values, or by adding a new line in the CREATE

TABLE script in the T-SQL view between the

[CurrencyDescription] line and the first CONSTRAINT line to

read [IsActive] BIT NOT NULL DEFAULT (1),

Either of these methods will cause the other view to automatically

update.

By default, modifying the object definition automatically checks out file

containing the definition from version control (creates a local copy of

this file that you can change and then later check in to version control

server if desired.)

5. On the File menu, click Save DimCurrency.sql to save the

changes (on the local file.)

6. Add a new view by right clicking on the schema dbo in the

Solution Explorer and clicking on Add and View…

7. Enter the view name DateView and click on Add

Exploring SQL Server Data Tools in Visual Studio 2013 41

8. This opens a sql script for Creating a new view

9. Replace the table name [SomeTableOrView] in the from clause

with [Dim Date] and click on Save icon from the toolbar

10. Right-click on the project () in the Solution

Explorer pane and select Source Control > Commit…

11. Enter a comment to describe the change (e.g. New column

[IsActive] added to <your table> table and new view <your

view> added)

Exploring SQL Server Data Tools in Visual Studio 2013 42

12. Click on Commit And Push (drop down option from the

Commit button) if using Git. Click Yes if prompted to confirm

save.

This saves a version of the database object which could be retrieved later

from the Get repository. The changes checked in are also now available

to other team members to view/use.

Create a database snapshot using Git

Exploring SQL Server Data Tools in Visual Studio 2013 43

A Database snapshot captures a copy of the database project as it

exists at the time you take the snapshot.

1. In Visual Studio Solution Explorer, right click on the project

you want to create a snapshot for and choose Snapshot

Project.

2. A <your project>_<timestamp>.dacpac file is created under

a folder named Snapshots in the project

3. Check In the snapshot by right clicking on it and selecting

Commit as after modifying database objects.

Exploring SQL Server Data Tools in Visual Studio 2013 44

The snapshot(s) created could be used to create new database project

with the state of objects present at the time of creating the snapshot.

These snapshots could also be used to compare the database schema

created between two snapshots or live databases or projects. The

compare schema also provides an option to generate the script to be

used to move between two versions of the database.

Compare Snapshots

1. Rright-click on the project in the solution explorer and select

Schema Compare…,

2. Once the SqlSchemaCompare tab has opened, click the drop-

down arrow next to the source, choose Select Source…

3. In the Select Data-tier Application File dialog, navigate to the

path

C:\SQLPROGRAMS\E4\ContosoRetailProj\ContosoRetailPr

oj\Snapshots directory and then select the <your

project>_<timestamp>.dacpac file and click Open.

Exploring SQL Server Data Tools in Visual Studio 2013 45

4. In the SqlSchemaCompare tab, source is set to the snapshot

selected.

5. Click OK for the Select Source Schema dialog.

6. Click on Select Target… option from the target dropdown

7. Select the Database option and choose the

SQLONE.ContosoRetailExportable (contoso\labuser)

database from which this solution was created

Exploring SQL Server Data Tools in Visual Studio 2013 46

NOTE: You could also select the project or one of the previously created

snapshots to compare the schema against

8. Click on Compare from the menu bar of the current tab

9. Results window shows the list of addition(s) and deletion(s)

performed between the version and Object Definitions

window highlights the changes between the version

10. Click on in the menu bar (tooltip is Generate Script) from

the menu to create the script to run against the source

database to get to the target state

Do not run this script, as we do not want to change the source

database in this case.

Exploring SQL Server Data Tools in Visual Studio 2013 47

This feature enables you to browse through the schema differences

visually before deployment. It also helps you in generating the delta SQL

script to move between versions (if needed).

Preparing to Publish the Database Project to a Live Database

Before building/publishing the changes to any server, let us look at

some of Project Properties which can be used to make Publishing to

different environments quite simple.

1. Right click on the project and select Properties from the

Solution Explorer

2. In the Project Settings tab, you could set the version and type

of SQL server you want to publish the current solution to, which

could be SQL Server 2005/2008/2012/2014 or Windows Azure

SQL Database. Here, verify the Target platform is SQL Server

2014

Exploring SQL Server Data Tools in Visual Studio 2013 48

NOTE: When one of the SQL servers are selected, errors specific to that

version of the SQL server are highlighted during Build

3. In the Build tab, you could check the Treat Transact-SQL

warnings as errors option. This would highlight the Transact-

SQL warnings as error while building the project. Do not check

this option here.

NOTE: You could also suppress any Transact-SQL warnings you do not

want to be shown as errors

4. In the SQLCMD Variables tab, you could define the values for

system defined variables and/or user defined variables like

$DatabaseName, $DefaultDataPath, etc. These variable values

could be used to provide dynamic substitution for debugging

or publishing to various environments and servers. Do not

change anything on this page now.

Exploring SQL Server Data Tools in Visual Studio 2013 49

5. Build Events tab could be used to specify a command line to

execute before the build operation starts and a command line

to execute after the build operation has completed. Do not

alter this settings page now.

6. You can use options from Code Analysis tab to discover

potential issues in your scripts, such as design, naming and

performance problems. Rules for database projects are

organized into predefined rule sets that target specific areas,

and you can enable or disable any of the rules available.

Rebuild and debug issues

7. In the Code Analysis tab of the project properties, check the

Enable Code Analysis on Build option

Exploring SQL Server Data Tools in Visual Studio 2013 50

8. Check Treat Warning as Error check box against

Microsoft.Rules.Data.Design entry

9. Click in the menu bar to save the changes

10. Right click on your project from the Solution Explorer pane

and click on Rebuild

11. Go to Error List pane to view the list of errors

12. In the Error List pane, double click on the error with the prefix

“SR0001 : Microsoft.Rules.Data :”

This will take you to the view definition window with asterisks (*)

highlighted.

13. Rright click on asterisks and select Refactor and Expand

Wildcards… option.

Exploring SQL Server Data Tools in Visual Studio 2013 51

14. In the preview changes window, click on Apply.

15. Click on Save from the tool bar to save the changes made to

the View

16. Right click on your project from the Solution Explorer pane

and click on Rebuild

17. If there are any other build errors, correct the errors before

proceeding, eg by changing NVARCHAR(1) to NCHAR(1) in

necessary table definitions

Exploring SQL Server Data Tools in Visual Studio 2013 52

Exploring SQL Server Data Tools in Visual Studio 2013 53

NOTE: To deploy a database into Window Azure, all tables present in the

database should have a clustered index. Error SQL71560 (Table does not

have a clustered index. Clustered indexes are required for inserting data

in this version of SQL Server) could be eliminated by creating a clustered

index for the table specified.

Commit changes to Git

1. Right click on the project and click on Commit.

2. Enter a comment and click on Commit and Push.

3. Verify the commit action was successful.

Exploring SQL Server Data Tools in Visual Studio 2013 54

Publish the Database to SQL Server 2014 instance

1. Right click on the project and select Properties

2. Go to Project Settings tab and ensure that the Target

platform is set to SQL Server 2014

3. Right click on the Project from the Solution Explorer pane and

click on Publish...

4. Click on Edit... to open the Connection Properties dialog box

Exploring SQL Server Data Tools in Visual Studio 2013 55

5. Enter SQLONE as the Server name, select Use Windows

Authentication

6. Enter ContosoRetailProj_2 as the database name

We are deploying to a new database here. You could

alternatively deploy to an existing database

7. Click OK

8. If needed, alter the publish script name in the text box below

9. Click on Advanced... button to set other Publishing properties

available

Exploring SQL Server Data Tools in Visual Studio 2013 56

NOTE: One of the options which is checked by default is Block

incremental deployment if data loss might occur. When this option

is checked, any action which could cause a possible data loss in the

target database will be stopped and the deployment will fail. If you are

sure about the data loss and want the change(s) to be deployed, uncheck

this option and click on OK.

10. Click on Save Profile As button to save the settings selected

(including the options selected in the advanced publish

settings)

Exploring SQL Server Data Tools in Visual Studio 2013 57

11. Browse to a desired location, provide a profile name and click

on Save

12. Click on Generate Script to generate a SQL script to publish

the changes on the desired target server

This also helps in generating the deployment scripts which could be re-

used for deploying to different environments

Exploring SQL Server Data Tools in Visual Studio 2013 58

13. Click on in the menu bar to publish the changes to target

server

14. To verify the changes, open the SQL Server Object Explorer

pane (from the menu select View then SQL Server Object

Explorer), expand SQL Server then SQLONE then Databases

and you should see ContosoRetailProj_2

Exploring SQL Server Data Tools in Visual Studio 2013 59

NOTE: If the database is not shown then press the refresh icon you

will need to repeat the expand steps above

15. Expand the Server and the Database folder

16. Locate the database to which the changes were deployed and

expand ContosoRetailProj_2 followed by the database object

folder (e.g. Tables, View, etc.)

17. Double-click on any database object (eg the dbo.Dim Currency

table) to open it in design view and see

Visual Studio 2013 gives you a single interface to manage the end to

end development of an application. It provides the ability the have a

fully managed development process and source safe repository. Also

helps you in managing the entire life cycle in a better and efficient way.

Exploring SQL Server Data Tools in Visual Studio 2013 60

This feature allows DBA’s to work more effectively and have a source

safe repository for all their code, code changes and model changes

allowing them to easily develop solutions and enhancements and

publish these changes from a single toolset. This makes collaboration

more effective and saves the team time and effort.

Create the target Azure SQL Database

1. If you are not already in Azure Management Portal, open

Internet Explorer from the start screen and browse to

https://manage.windowsazure.com/ then sign in using your

Azure credentials.

2. In the blue navigation bar, click on SQL DATABASES.

3. In the grey options bar, click +New.

4. Select Custom Create.

5. Enter a name for the database as ContosoRetailProj and select

your subscription if asked.

6. Select SQL_Latin1_General_CP1_CI-AS as the collation.

7. Choose New SQL database server as the Server and click the

next arrow.

You can now close the lab environment.

Publish
project to
Azure SQL
Database

https://manage.windowsazure.com/

Exploring SQL Server Data Tools in Visual Studio 2013 61

8. Enter a LOGIN NAME as AzureAdmin and LOGIN

PASSWORD as Pass@word12

These define an SQL user which will initially be the only user who can

access the database, and is not the same as your Azure login. You can

create other SQL users later if desired (not covered in this tutorial.)

9. Choose West US as the region, leave Allow Windows Azure

Services to Access the Server ticked, and click the check mark

to create the database.

Exploring SQL Server Data Tools in Visual Studio 2013 62

10. Copy the generated server name to the clipboard by selecting

the name in the list and pressing Ctrl+C.

You now need to open a firewall port on the Azure SQL Database so you

can connect using your computer’s IP address.

11. Click on the database name you created to display the

database overview page.

Exploring SQL Server Data Tools in Visual Studio 2013 63

12. Click on the Set up Windows Azure firewall rules for this IP

address link.

13. Click Yes to respond to the prompt to update the firewall rules.

Publish the Database to Azure SQL Database:

1. Right click on the project in the Solution Explorer and select

Properties

2. Go to Project Settings tab and ensure that the Target

platform is set to Windows Azure SQL Database

3. Click File > Save Selected in the menu or us CTL-S (press Ctrl

key and S key down at the same time)

4. Right click on the project from Solution Explorer pane and

click on Build

5. Open the Error List pane at the bottom of the window.

Any problems for deploying to Azure will be displayed here.

Exploring SQL Server Data Tools in Visual Studio 2013 64

6. If there are any errors, double-click on them to go to the

location of the error and then fix it. You can ignore warnings.

NOTE: To deploy a database into Window Azure, all tables present in the

database should have a clustered index. Error SQL71560 (Table does not

have a clustered index. Clustered indexes are required for inserting data

in this version of SQL Server) could be eliminated by creating a clustered

index for the table specified in the list.

7. Right click on the Project from the Solution Explorer pane and

click on Publish...

8. Click on Edit... to open the Connection Properties dialog box

9. Enter the Windows Azure SQL Server name, by pasting the

server name followed by database.windows.net

Example: n04vaq4nef.database.windows.net

10. Select Use SQL Server Authentication

11. Enter the User name as AzureAdmin and Password as

Pass@word12 to connect to the server

12. Enter ContosoRetailProj as the database name

Exploring SQL Server Data Tools in Visual Studio 2013 65

13. Click Test Connection to make sure you have the server

connection information correct and the OK to dismiss the

message box.

14. Click on OK

15. Change the publish script name to

ContosoRetailProjAzure.sql

Exploring SQL Server Data Tools in Visual Studio 2013 66

16. Click Publish to publish the changes directly.

NOTE: This may take a significant amount of time to process

Generating a script also helps in generating the deployment scripts

which could be re-used for deploying to different environments

17. To verify the changes, right click on the Windows Azure SQL

Server/Database in the SQL Server Object Explorer pane and

click on Refresh.

18. Expand the Server and the Database folder

19. Locate the database to which the changes were deployed and

expand the database followed by the database object folder

(e.g. Tables, View, etc.)

20. Double click on the View dbo.DataView to open the designer

and verify the published changes

Exploring SQL Server Data Tools in Visual Studio 2013 67

Visual Studio 2013 gives you a single interface to handle modification

and publication with no intermediate steps. It saves a lot of time which

is spent on integrating independent changes and different versions of

development. You now have one go to tool to handle all your

development and deployment needs. With Visual Studio 2013 it has

become more agile to deploying and manage changes and

applications between platforms.

Rollback Azure changes

1. Open the Azure Management Portal at

https://manage.windowsazure.com/ and sign in with your

credentials

2. Delete Azure databases and servers

i. Click on SQL DATABASES in the navigation pane

ii. Click SERVERS at the page top and select the server you

want to delete (if you are not sure which server you created

during this experience, click on the server name then

Databases at the top of the page to see a list of databases

hosted on this server.)

iii. Click DELETE in the options pane at the bottom of the page

iv. Carry out the confirmation steps and click the check mark.

You can now close this lab.

Roll back
Azure
changes

https://manage.windowsazure.com/

Exploring SQL Server Data Tools in Visual Studio 2013 68

© 2014 Microsoft Corporation. All rights reserved.

By using this Hands-on Lab, you agree to the following terms:

The technology/functionality described in this Hands-on Lab is

provided by Microsoft Corporation in a “sandbox” testing environment

for purposes of obtaining your feedback and to provide you with a

learning experience. You may only use the Hands-on Lab to evaluate

such technology features and functionality and provide feedback to

Microsoft. You may not use it for any other purpose. You may not

modify, copy, distribute, transmit, display, perform, reproduce, publish,

license, create derivative works from, transfer, or sell this Hands-on Lab

or any portion thereof.

COPYING OR REPRODUCTION OF THE HANDS-ON LAB (OR ANY

PORTION OF IT) TO ANY OTHER SERVER OR LOCATION FOR FURTHER

REPRODUCTION OR REDISTRIBUTION IS EXPRESSLY PROHIBITED.

THIS HANDS-ONLAB PROVIDES CERTAIN SOFTWARE

TECHNOLOGY/PRODUCT FEATURES AND FUNCTIONALITY,

INCLUDING POTENTIAL NEW FEATURES AND CONCEPTS, IN A

SIMULATED ENVIRONMENT WITHOUT COMPLEX SET-UP OR

INSTALLATION FOR THE PURPOSE DESCRIBED ABOVE. THE

TECHNOLOGY/CONCEPTS REPRESENTED IN THIS HANDS-ON LAB

MAY NOT REPRESENT FULL FEATURE FUNCTIONALITY AND MAY NOT

WORK THE WAY A FINAL VERSION MAY WORK. WE ALSO MAY NOT

RELEASE A FINAL VERSION OF SUCH FEATURES OR CONCEPTS. YOUR

EXPERIENCE WITH USING SUCH FEATURES AND FUNCITONALITY IN A

PHYSICAL ENVIRONMENT MAY ALSO BE DIFFERENT.

FEEDBACK. If you give feedback about the technology features,

functionality and/or concepts described in this Hands-on Lab to

Microsoft, you give to Microsoft, without charge, the right to use, share

and commercialize your feedback in any way and for any purpose. You

also give to third parties, without charge, any patent rights needed for

their products, technologies and services to use or interface with any

specific parts of a Microsoft software or service that includes the

feedback. You will not give feedback that is subject to a license that

requires Microsoft to license its software or documentation to third

parties because we include your feedback in them. These rights survive

this agreement.

MICROSOFT CORPORATION HEREBY DISCLAIMS ALL WARRANTIES

AND CONDITIONS WITH REGARD TO THE HANDS-ON LAB ,

INCLUDING ALL WARRANTIES AND CONDITIONS OF

MERCHANTABILITY, WHETHER EXPRESS, IMPLIED OR STATUTORY,

FITNESS FOR A PARTICULAR PURPOSE, TITLE AND NON-

INFRINGEMENT. MICROSOFT DOES NOT MAKE ANY ASSURANCES OR

Terms of
use

Exploring SQL Server Data Tools in Visual Studio 2013 69

REPRESENTATIONS WITH REGARD TO THE ACCURACY OF THE

RESULTS, OUTPUT THAT DERIVES FROM USE OF THE VIRTUAL LAB, OR

SUITABILITY OF THE INFORMATION CONTAINED IN THE VIRTUAL LAB

FOR ANY PURPOSE.

DISCLAIMER

This lab contains only a portion of new features and enhancements in

Microsoft SQL Server 2014. Some of the features might change in

future releases of the product. In this lab, you will learn about some,

but not all, new features.

